1
|
Rincón AM, Monje-Casas F. A guiding torch at the poles: the multiple roles of spindle microtubule-organizing centers during cell division. Cell Cycle 2020; 19:1405-1421. [PMID: 32401610 DOI: 10.1080/15384101.2020.1754586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The spindle constitutes the cellular machinery that enables the segregation of the chromosomes during eukaryotic cell division. The microtubules that form this fascinating and complex genome distribution system emanate from specialized structures located at both its poles and known as microtubule-organizing centers (MTOCs). Beyond their structural function, the spindle MTOCs play fundamental roles in cell cycle control, the activation and functionality of the mitotic checkpoints and during cellular aging. This review highlights the pivotal importance of spindle-associated MTOCs in multiple cellular processes and their central role as key regulatory hubs where diverse intracellular signals are integrated and coordinated to ensure the successful completion of cell division and the maintenance of the replicative lifespan.
Collapse
Affiliation(s)
- Ana M Rincón
- Centro Andaluz de Biología Molecular Y Medicina Regenerativa (CABIMER) / CSIC - Universidad de Sevilla - Universidad Pablo de Olavide , Sevilla, Spain.,Dpto. de Genética / Universidad de Sevilla , Sevilla, Spain
| | - Fernando Monje-Casas
- Centro Andaluz de Biología Molecular Y Medicina Regenerativa (CABIMER) / CSIC - Universidad de Sevilla - Universidad Pablo de Olavide , Sevilla, Spain.,Consejo Superior de Investigaciones Científicas (CSIC) , Sevilla, Spain
| |
Collapse
|
2
|
Aldiri I, Ajioka I, Xu B, Zhang J, Chen X, Benavente C, Finkelstein D, Johnson D, Akiyama J, Pennacchio LA, Dyer MA. Brg1 coordinates multiple processes during retinogenesis and is a tumor suppressor in retinoblastoma. Development 2016; 142:4092-106. [PMID: 26628093 PMCID: PMC4712833 DOI: 10.1242/dev.124800] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Retinal development requires precise temporal and spatial coordination of cell cycle exit, cell fate specification, cell migration and differentiation. When this process is disrupted, retinoblastoma, a developmental tumor of the retina, can form. Epigenetic modulators are central to precisely coordinating developmental events, and many epigenetic processes have been implicated in cancer. Studying epigenetic mechanisms in development is challenging because they often regulate multiple cellular processes; therefore, elucidating the primary molecular mechanisms involved can be difficult. Here we explore the role of Brg1 (Smarca4) in retinal development and retinoblastoma in mice using molecular and cellular approaches. Brg1 was found to regulate retinal size by controlling cell cycle length, cell cycle exit and cell survival during development. Brg1 was not required for cell fate specification but was required for photoreceptor differentiation and cell adhesion/polarity programs that contribute to proper retinal lamination during development. The combination of defective cell differentiation and lamination led to retinal degeneration in Brg1-deficient retinae. Despite the hypocellularity, premature cell cycle exit, increased cell death and extended cell cycle length, retinal progenitor cells persisted in Brg1-deficient retinae, making them more susceptible to retinoblastoma. ChIP-Seq analysis suggests that Brg1 might regulate gene expression through multiple mechanisms. Summary: The SWI/SNF protein Brg1 controls cell cycle length, cell cycle exit and cell survival, and is required for cell differentiation and retinal lamination, in the developing mouse retina.
Collapse
Affiliation(s)
- Issam Aldiri
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Itsuki Ajioka
- Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jiakun Zhang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Claudia Benavente
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dianna Johnson
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jennifer Akiyama
- Lawrence Berkeley National Laboratory, Genomics Division, Berkeley, CA 94701, USA Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Len A Pennacchio
- Lawrence Berkeley National Laboratory, Genomics Division, Berkeley, CA 94701, USA Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|