1
|
Squarisi IS, Ribeiro VP, Ribeiro AB, de Souza LTM, Junqueira MDM, de Oliveira KM, Hayot G, Dickmeis T, Bastos JK, Veneziani RCS, Ambrósio SR, Tavares DC. Development of a Benzophenone-Free Red Propolis Extract and Evaluation of Its Efficacy against Colon Carcinogenesis. Pharmaceuticals (Basel) 2024; 17:1340. [PMID: 39458981 PMCID: PMC11510570 DOI: 10.3390/ph17101340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Brazilian red propolis has attracted attention for its pharmacological properties. However, signs of toxicity were recently observed in long-term studies using the hydroalcoholic extract of red propolis (RPHE), likely due to polyprenylated benzophenones. This study aimed to develop a benzophenone-free red propolis extract (BFRP) and validate an HPLC-PDA method to quantify its main constituents: isoliquiritigenin, vestitol, neovestitol, medicarpine, and 7-O-methylvestitol. METHODS BFRP's toxicity was assessed in zebrafish larvae through a vibrational startle response assay (VSRA) and morphological analysis. Genotoxicity was evaluated using the micronucleus test in rodents, and the extract's effects on chemically induced preneoplastic lesions in rat colon were studied. An HPLC-PDA method was used to quantify BFRP's main compounds. RESULTS BFRP primarily contained vestitol (128.24 ± 1.01 μg/mL) along with isoliquiritigenin, medicarpin, neovestitol, and 7-O-methylvestitol. Zebrafish larvae exposed to 40 µg/mL of BFRP exhibited toxicity, higher than the 10 µg/mL for RPHE, though no morphological differences were found. Fluorescent staining in the notochord, branchial arches, and mouth was observed in larvae treated with both BFRP and RPHE. No genotoxic or cytotoxic effects were observed up to 2000 mg/kg in rodents, with no impact on hepatotoxicity or nephrotoxicity markers. Chemoprevention studies showed a 41.6% reduction in preneoplastic lesions in rats treated with 6 mg/kg of BFRP. CONCLUSIONS These findings indicate that BFRP is a safe, effective propolis-based extract with potential applications for human health, demonstrating reduced toxicity and chemopreventive properties.
Collapse
Affiliation(s)
- Iara Silva Squarisi
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca 14404-600, SP, Brazil; (I.S.S.); (V.P.R.); (A.B.R.); (L.T.M.d.S.); (M.d.M.J.); (K.M.d.O.); (R.C.S.V.)
| | - Victor Pena Ribeiro
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca 14404-600, SP, Brazil; (I.S.S.); (V.P.R.); (A.B.R.); (L.T.M.d.S.); (M.d.M.J.); (K.M.d.O.); (R.C.S.V.)
| | - Arthur Barcelos Ribeiro
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca 14404-600, SP, Brazil; (I.S.S.); (V.P.R.); (A.B.R.); (L.T.M.d.S.); (M.d.M.J.); (K.M.d.O.); (R.C.S.V.)
| | - Letícia Teixeira Marcos de Souza
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca 14404-600, SP, Brazil; (I.S.S.); (V.P.R.); (A.B.R.); (L.T.M.d.S.); (M.d.M.J.); (K.M.d.O.); (R.C.S.V.)
| | - Marcela de Melo Junqueira
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca 14404-600, SP, Brazil; (I.S.S.); (V.P.R.); (A.B.R.); (L.T.M.d.S.); (M.d.M.J.); (K.M.d.O.); (R.C.S.V.)
| | - Kátia Mara de Oliveira
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca 14404-600, SP, Brazil; (I.S.S.); (V.P.R.); (A.B.R.); (L.T.M.d.S.); (M.d.M.J.); (K.M.d.O.); (R.C.S.V.)
| | - Gaelle Hayot
- Institute of Biological and Chemical Systems—Biological Information Processing—Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (G.H.)
| | - Thomas Dickmeis
- Institute of Biological and Chemical Systems—Biological Information Processing—Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (G.H.)
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil;
| | - Rodrigo Cassio Sola Veneziani
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca 14404-600, SP, Brazil; (I.S.S.); (V.P.R.); (A.B.R.); (L.T.M.d.S.); (M.d.M.J.); (K.M.d.O.); (R.C.S.V.)
| | - Sérgio Ricardo Ambrósio
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca 14404-600, SP, Brazil; (I.S.S.); (V.P.R.); (A.B.R.); (L.T.M.d.S.); (M.d.M.J.); (K.M.d.O.); (R.C.S.V.)
| | - Denise Crispim Tavares
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca 14404-600, SP, Brazil; (I.S.S.); (V.P.R.); (A.B.R.); (L.T.M.d.S.); (M.d.M.J.); (K.M.d.O.); (R.C.S.V.)
| |
Collapse
|
2
|
Abstract
Embryonic development hinges on effective coordination of molecular events across space and time. Waves have recently emerged as constituting an ubiquitous mechanism that ensures rapid spreading of regulatory signals across embryos, as well as reliable control of their patterning, namely, for the emergence of body plan structures. In this article, we review a selection of recent quantitative work on signaling waves and present an overview of the theory of waves. Our aim is to provide a succinct yet comprehensive guiding reference for the theoretical frameworks by which signaling waves can arise in embryos. We start, then, from reaction-diffusion systems, both static and time dependent; move to excitable dynamics; and conclude with systems of coupled oscillators. We link these theoretical models to molecular mechanisms recently elucidated for the control of mitotic waves in early embryos, patterning of the vertebrate body axis, micropattern cultures, and bone regeneration. Our goal is to inspire experimental work that will advance theory in development and connect its predictions to quantitative biological observations.
Collapse
Affiliation(s)
- Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Massimo Vergassola
- Laboratoire de physique de l'École Normale Supérieure, CNRS, PSL Research University, Sorbonne Université, Paris, France;
- Department of Physics, University of California, San Diego, California, USA
| |
Collapse
|
3
|
Bhavna R. Segmentation clock dynamics is strongly synchronized in the forming somite. Dev Biol 2020; 460:55-69. [PMID: 30926261 DOI: 10.1016/j.ydbio.2019.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 10/27/2022]
Abstract
During vertebrate somitogenesis an inherent segmentation clock coordinates the spatiotemporal signaling to generate segmented structures that pattern the body axis. Using our experimental and quantitative approach, we study the cell movements and the genetic oscillations of her1 expression level at single-cell resolution simultaneously and scale up to the entire pre-somitic mesoderm (PSM) tissue. From the experimentally determined phases of PSM cellular oscillators, we deduced an in vivo frequency profile gradient along the anterior-posterior PSM axis and inferred precise mathematical relations between spatial cell-level period and tissue-level somitogenesis period. We also confirmed a gradient in the relative velocities of cellular oscillators along the axis. The phase order parameter within an ensemble of oscillators revealed the degree of synchronization in the tailbud and the posterior PSM being only partial, whereas synchronization can be almost complete in the presumptive somite region but with temporal oscillations. Collectively, the degree of synchronization itself, possibly regulated by cell movement and the synchronized temporal phase of the transiently expressed clock protein Her1, can be an additional control mechanism for making precise somite boundaries.
Collapse
Affiliation(s)
- Rajasekaran Bhavna
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, 01187, Dresden, Germany; Tata Institute of Fundamental Research, 400005, Mumbai, India.
| |
Collapse
|
4
|
Hozumi K. Distinctive properties of the interactions between Notch and Notch ligands. Dev Growth Differ 2019; 62:49-58. [PMID: 31886898 DOI: 10.1111/dgd.12641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023]
Abstract
Although Notch signaling is known to be critical for the specification of cell fate in various developing organs, the particular roles of each Notch and Notch ligand (NotchL) have not yet been elucidated. The phenotypes found in loss-of-function experiments have varied, depending on the expression profiles of the receptors and ligands. However, in some cases, their significances differ from others, even with comparable levels of expression, suggesting a distinctive functional receptor-ligand interaction during the activation process of Notch signaling. In this review, the phenotypes observed in Notch/NotchL-deficient situations are introduced, and their distinct roles are accentuated. The distinctive features of the specific combinations of Notch/NotchL are also discussed. This review aims to highlight the unanswered questions in this field to help improve our understanding of the preferential functional interaction between Notch and NotchL.
Collapse
Affiliation(s)
- Katsuto Hozumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
5
|
Cervera J, Manzanares JA, Mafe S, Levin M. Synchronization of Bioelectric Oscillations in Networks of Nonexcitable Cells: From Single-Cell to Multicellular States. J Phys Chem B 2019; 123:3924-3934. [PMID: 31003574 DOI: 10.1021/acs.jpcb.9b01717] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biological networks use collective oscillations for information processing tasks. In particular, oscillatory membrane potentials have been observed in nonexcitable cells and bacterial communities where specific ion channel proteins contribute to the bioelectric coordination of large populations. We aim at describing theoretically the oscillatory spatiotemporal patterns that emerge at the multicellular level from the single-cell bioelectric dynamics. To this end, we focus on two key questions: (i) What single-cell properties are relevant to multicellular behavior? (ii) What properties defined at the multicellular level can allow an external control of the bioelectric dynamics? In particular, we explore the interplay between transcriptional and translational dynamics and membrane potential dynamics in a model multicellular ensemble, describe the spatiotemporal patterns that arise when the average electric potential allows groups of cells to act as a coordinated multicellular patch, and characterize the resulting synchronization phenomena. The simulations concern bioelectric networks and collective communication across different scales based on oscillatory and synchronization phenomena, thus shedding light on the physiological dynamics of a wide range of endogenous contexts across embryogenesis and regeneration.
Collapse
Affiliation(s)
- Javier Cervera
- Departament de Termodinàmica, Facultat de Física , Universitat de València , E-46100 Burjassot , Spain
| | - José Antonio Manzanares
- Departament de Termodinàmica, Facultat de Física , Universitat de València , E-46100 Burjassot , Spain
| | - Salvador Mafe
- Departament de Termodinàmica, Facultat de Física , Universitat de València , E-46100 Burjassot , Spain
| | - Michael Levin
- Allen Discovery Center at Tufts University, Department of Biology , Tufts University Medford , Massachusetts 02155-4243 , United States
| |
Collapse
|
6
|
Lleras Forero L, Narayanan R, Huitema LF, VanBergen M, Apschner A, Peterson-Maduro J, Logister I, Valentin G, Morelli LG, Oates AC, Schulte-Merker S. Segmentation of the zebrafish axial skeleton relies on notochord sheath cells and not on the segmentation clock. eLife 2018; 7:33843. [PMID: 29624170 PMCID: PMC5962341 DOI: 10.7554/elife.33843] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 04/04/2018] [Indexed: 12/12/2022] Open
Abstract
Segmentation of the axial skeleton in amniotes depends on the segmentation clock, which patterns the paraxial mesoderm and the sclerotome. While the segmentation clock clearly operates in teleosts, the role of the sclerotome in establishing the axial skeleton is unclear. We severely disrupt zebrafish paraxial segmentation, yet observe a largely normal segmentation process of the chordacentra. We demonstrate that axial entpd5+ notochord sheath cells are responsible for chordacentrum mineralization, and serve as a marker for axial segmentation. While autonomous within the notochord sheath, entpd5 expression and centrum formation show some plasticity and can respond to myotome pattern. These observations reveal for the first time the dynamics of notochord segmentation in a teleost, and are consistent with an autonomous patterning mechanism that is influenced, but not determined by adjacent paraxial mesoderm. This behavior is not consistent with a clock-type mechanism in the notochord.
Collapse
Affiliation(s)
- Laura Lleras Forero
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany.,CiM Cluster of Excellence (EXC-1003-CiM), Münster, Germany.,Hubrecht Institute-KNAW & UMC Utrecht, Utrecht, Netherlands
| | | | | | - Maaike VanBergen
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| | | | | | - Ive Logister
- Hubrecht Institute-KNAW & UMC Utrecht, Utrecht, Netherlands
| | | | - Luis G Morelli
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina.,Departamento de Fisica, FCEyN, UBA, Ciudad Universitaria, Buenos Aires, Argentina.,Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Andrew C Oates
- The Francis Crick Institute, London, United Kingdom.,Department of Cell and Developmental Biology, University College London, London, United Kingdom.,Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| |
Collapse
|
7
|
Deneke VE, Di Talia S. Chemical waves in cell and developmental biology. J Cell Biol 2018; 217:1193-1204. [PMID: 29317529 PMCID: PMC5881492 DOI: 10.1083/jcb.201701158] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/28/2017] [Accepted: 12/12/2017] [Indexed: 12/31/2022] Open
Abstract
Many biological events, such as the propagation of nerve impulses, the synchronized cell cycles of early embryogenesis, and collective cell migration, must be coordinated with remarkable speed across very large distances. Such rapid coordination cannot be achieved by simple diffusion of molecules alone and requires specialized mechanisms. Although active transport can provide a directed and efficient way to travel across subcellular structures, it cannot account for the most rapid examples of coordination found in biology. Rather, these appear to be driven by mechanisms involving traveling waves of chemical activities that are able to propagate information rapidly across biological or physical systems. Indeed, recent advances in our ability to probe the dynamics of signaling pathways are revealing many examples of coordination of cellular and developmental processes through traveling chemical waves. Here, we will review the theoretical principles underlying such waves; highlight recent literature on their role in different contexts, ranging from chemotaxis to development; and discuss open questions and future perspectives on the study of chemical waves as an essential feature of cell and tissue physiology.
Collapse
Affiliation(s)
- Victoria E Deneke
- Department of Cell Biology, Duke University Medical Center, Durham, NC
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC
| |
Collapse
|
8
|
Liao BK, Oates AC. Delta-Notch signalling in segmentation. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:429-447. [PMID: 27888167 PMCID: PMC5446262 DOI: 10.1016/j.asd.2016.11.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 11/20/2016] [Accepted: 11/21/2016] [Indexed: 06/06/2023]
Abstract
Modular body organization is found widely across multicellular organisms, and some of them form repetitive modular structures via the process of segmentation. It's vastly interesting to understand how these regularly repeated structures are robustly generated from the underlying noise in biomolecular interactions. Recent studies from arthropods reveal similarities in segmentation mechanisms with vertebrates, and raise the possibility that the three phylogenetic clades, annelids, arthropods and chordates, might share homology in this process from a bilaterian ancestor. Here, we discuss vertebrate segmentation with particular emphasis on the role of the Notch intercellular signalling pathway. We introduce vertebrate segmentation and Notch signalling, pointing out historical milestones, then describe existing models for the Notch pathway in the synchronization of noisy neighbouring oscillators, and a new role in the modulation of gene expression wave patterns. We ask what functions Notch signalling may have in arthropod segmentation and explore the relationship between Notch-mediated lateral inhibition and synchronization. Finally, we propose open questions and technical challenges to guide future investigations into Notch signalling in segmentation.
Collapse
Affiliation(s)
- Bo-Kai Liao
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| | - Andrew C Oates
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK; Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|