1
|
Sarji M, Ankawa R, Yampolsky M, Fuchs Y. A near death experience: The secret stem cell life of caspase-3. Semin Cell Dev Biol 2025; 171:103617. [PMID: 40344690 DOI: 10.1016/j.semcdb.2025.103617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 05/11/2025]
Abstract
Caspase-3 is known to play a pivotal role in mediating apoptosis, a key programmed cell death pathway. While extensive research has focused on understanding how caspase-3 is activated and functions during apoptosis, emerging evidence has revealed its significant non-apoptotic roles across various cell types, including stem cells. This review explores the critical involvement of caspase-3 in regulating stem cell properties, maintaining stem cell populations, and facilitating tissue regeneration. We also explore the potential pathological consequences of caspase-3 dysfunction in stem cells and cancer cells alongside the therapeutic opportunities of targeting caspase-3.
Collapse
Affiliation(s)
- Mahasen Sarji
- Faculty of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Roi Ankawa
- Augmanity, Rehovot, Israel; Elixr Bio, Rehovot, Israel
| | | | - Yaron Fuchs
- Augmanity, Rehovot, Israel; Elixr Bio, Rehovot, Israel.
| |
Collapse
|
2
|
Li Y, Gong L, Wu J, Hung W, Zhen M, Gao S. UBR-1 deficiency leads to ivermectin resistance in Caenorhabditis elegans. eLife 2025; 13:RP103718. [PMID: 40167441 PMCID: PMC11961118 DOI: 10.7554/elife.103718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Resistance to anthelmintics, particularly the macrocyclic lactone ivermectin (IVM), presents a substantial global challenge for parasite control. We found that the functional loss of an evolutionarily conserved E3 ubiquitin ligase, UBR-1, leads to IVM resistance in Caenorhabditis elegans. Multiple IVM-inhibiting activities, including viability, body size, pharyngeal pumping, and locomotion, were significantly ameliorated in various ubr-1 mutants. Interestingly, exogenous application of glutamate induces IVM resistance in wild-type animals. The sensitivity of all IVM-affected phenotypes of ubr-1 is restored by eliminating proteins associated with glutamate metabolism or signaling: GOT-1, a transaminase that converts aspartate to glutamate, and EAT-4, a vesicular glutamate transporter. We demonstrated that IVM-targeted GluCls (glutamate-gated chloride channels) are downregulated and that the IVM-mediated inhibition of serotonin-activated pharynx Ca2+ activity is diminished in ubr-1. Additionally, enhancing glutamate uptake in ubr-1 mutants through ceftriaxone completely restored their IVM sensitivity. Therefore, UBR-1 deficiency-mediated aberrant glutamate signaling leads to ivermectin resistance in C. elegans.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Long Gong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Jing Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Wesley Hung
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of TorontoTorontoCanada
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of TorontoTorontoCanada
| | - Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
3
|
Wei H, Weaver YM, Weaver BP. Xeroderma pigmentosum protein XPD controls caspase-mediated stress responses. Nat Commun 2024; 15:9344. [PMID: 39472562 PMCID: PMC11522282 DOI: 10.1038/s41467-024-53755-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Caspases regulate and execute a spectrum of functions including cell deaths, non-apoptotic developmental functions, and stress responses. Despite these disparate roles, the same core cell-death machinery is required to enzymatically activate caspase proteolytic activities. Thus, it remains enigmatic how distinct caspase functions are differentially regulated. In this study, we show that Xeroderma pigmentosum protein XPD has a conserved function in activating the expression of stress-responsive caspases in C. elegans and human cells without triggering cell death. Using C. elegans, we show XPD-1-dependent activation of CED-3 caspase promotes survival upon genotoxic UV irradiation and inversely suppresses responses to non-genotoxic insults such as ER and osmotic stressors. Unlike the TFDP ortholog DPL-1 which is required for developmental apoptosis in C. elegans, XPD-1 only activates stress-responsive functions of caspase. This tradeoff balancing responses to genotoxic and non-genotoxic stress may explain the seemingly contradictory nature of caspase-mediated stress resilience versus sensitivity under different stressors.
Collapse
Affiliation(s)
- Hai Wei
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yi M Weaver
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin P Weaver
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
4
|
Calva Moreno JF, Jose G, Weaver YM, Weaver BP. UBR-5 and UBE2D mediate timely exit from stem fate via destabilization of poly(A)-binding protein PABP-2 in cell state transition. Proc Natl Acad Sci U S A 2024; 121:e2407561121. [PMID: 39405353 PMCID: PMC11513905 DOI: 10.1073/pnas.2407561121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
UBR5 E3 ligase has been associated with cancer susceptibility and neuronal integrity, with functions in chromatin regulation and proteostasis. However, the functions of ubr5 within animals remain unclear due to lethality in both mammals and flies when disrupted. Using Caenorhabditis elegans, we show that UBR-5 E3 ligase is required for timely exit of stem fate and complete transition into multiple cell type descendants in an ectodermal blast lineage. Animals lacking intact UBR-5 function simultaneously exhibit both stem fate and differentiated fate in the same descendant cells. A functional screen of UBR-5 physical interactors allowed us to identify the UBE2D2/3 E2 conjugase LET-70 working with UBR-5 to exit stem fate. Strikingly, we revealed that another UBR-5 physical interactor, namely the nuclear poly(A)-binding protein PABPN1 ortholog PABP-2, worked antagonistically to UBR-5 and LET-70. Lowering pabp-2 levels restored normal transition of cell state out of stemness and promoted normal cell fusion when either ubr-5 or let-70 UBE2D function was compromised. The UBR-5-LET-70 and PABP-2 switch works independently of the stem pool size determined by pluripotency factors like lin-28. UBR-5 limits PABP-2 protein and reverses the PABP-2-dependent gene expression program including developmental, proteostasis, and innate immunity genes. Loss of ubr-5 rescues the developmental stall when pabp-2 is compromised. Disruption of ubr-5 elevates PABP-2 levels and prolongs expression of ectodermal and muscle stem markers at the transition to adulthood. Additionally, ubr-5 mutants exhibit an extended period of motility during aging and suppress pabp-2-dependent early onset of immobility.
Collapse
Affiliation(s)
| | - George Jose
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Yi M. Weaver
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Benjamin P. Weaver
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
5
|
Ghorbani N, Yaghubi R, Davoodi J, Pahlavan S. How does caspases regulation play role in cell decisions? apoptosis and beyond. Mol Cell Biochem 2024; 479:1599-1613. [PMID: 37976000 DOI: 10.1007/s11010-023-04870-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/05/2023] [Indexed: 11/19/2023]
Abstract
Caspases are a family of cysteine proteases, and the key factors behind the cellular events which occur during apoptosis and inflammation. However, increasing evidence shows the non-conventional pro-survival action of apoptotic caspases in crucial processes. These cellular events include cell proliferation, differentiation, and migration, which may appear in the form of metastasis, and chemotherapy resistance in cancerous situations. Therefore, there should be a precise and strict control of caspases activity, perhaps through maintaining the threshold below the required levels for apoptosis. Thus, understanding the regulators of caspase activities that render apoptotic caspases as non-apoptotic is of paramount importance both mechanistically and clinically. Furthermore, the functions of apoptotic caspases are affected by numerous post-translational modifications. In the present mini-review, we highlight the various mechanisms that directly impact caspases with respect to their anti- or non-apoptotic functions. In this regard, post-translational modifications (PTMs), isoforms, subcellular localization, transient activity, substrate availability, substrate selection, and interaction-mediated regulations are discussed.
Collapse
Affiliation(s)
- Negar Ghorbani
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Roham Yaghubi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Jamshid Davoodi
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
6
|
Subramanian M, Mills WT, Paranjpe MD, Onuchukwu US, Inamdar M, Maytin AR, Li X, Pomerantz JL, Meffert MK. Growth-suppressor microRNAs mediate synaptic overgrowth and behavioral deficits in Fragile X mental retardation protein deficiency. iScience 2024; 27:108676. [PMID: 38235335 PMCID: PMC10792201 DOI: 10.1016/j.isci.2023.108676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/20/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Abnormal neuronal and synapse growth is a core pathology resulting from deficiency of the Fragile X mental retardation protein (FMRP), but molecular links underlying the excessive synthesis of key synaptic proteins remain incompletely defined. We find that basal brain levels of the growth suppressor let-7 microRNA (miRNA) family are selectively lowered in FMRP-deficient mice and activity-dependent let-7 downregulation is abrogated. Primary let-7 miRNA transcripts are not altered in FMRP-deficiency and posttranscriptional misregulation occurs downstream of MAPK pathway induction and elevation of Lin28a, a let-7 biogenesis inhibitor. Neonatal restoration of brain let-7 miRNAs corrects hallmarks of FMRP-deficiency, including dendritic spine overgrowth and social and cognitive behavioral deficits, in adult mice. Blockade of MAPK hyperactivation normalizes let-7 miRNA levels in both brain and peripheral blood plasma from Fmr1 KO mice. These results implicate dysregulated let-7 miRNA biogenesis in the pathogenesis of FMRP-deficiency, and highlight let-7 miRNA-based strategies for future biomarker and therapeutic development.
Collapse
Affiliation(s)
- Megha Subramanian
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - William T. Mills
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manish D. Paranjpe
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Uche S. Onuchukwu
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manasi Inamdar
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amanda R. Maytin
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xinbei Li
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joel L. Pomerantz
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mollie K. Meffert
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Wei H, Weaver YM, Yang C, Zhang Y, Hu G, Karner CM, Sieber M, DeBerardinis RJ, Weaver BP. Proteolytic activation of fatty acid synthase signals pan-stress resolution. Nat Metab 2024; 6:113-126. [PMID: 38167727 PMCID: PMC10822777 DOI: 10.1038/s42255-023-00939-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
Chronic stress and inflammation are both outcomes and major drivers of many human diseases. Sustained responsiveness despite mitigation suggests a failure to sense resolution of the stressor. Here we show that a proteolytic cleavage event of fatty acid synthase (FASN) activates a global cue for stress resolution in Caenorhabditis elegans. FASN is well established for biosynthesis of the fatty acid palmitate. Our results demonstrate FASN promoting an anti-inflammatory profile apart from palmitate synthesis. Redox-dependent proteolysis of limited amounts of FASN by caspase activates a C-terminal fragment sufficient to downregulate multiple aspects of stress responsiveness, including gene expression, metabolic programs and lipid droplets. The FASN C-terminal fragment signals stress resolution in a cell non-autonomous manner. Consistent with these findings, FASN processing is also seen in well-fed but not fasted male mouse liver. As downregulation of stress responses is critical to health, our findings provide a potential pathway to control diverse aspects of stress responses.
Collapse
Affiliation(s)
- Hai Wei
- Department of Pharmacology, UT Southwestern, Dallas, TX, USA
| | - Yi M Weaver
- Department of Pharmacology, UT Southwestern, Dallas, TX, USA
| | - Chendong Yang
- Children's Medical Center Research Institute, UT Southwestern, Dallas, TX, USA
| | - Yuan Zhang
- Department of Pharmacology, UT Southwestern, Dallas, TX, USA
| | - Guoli Hu
- Department of Internal Medicine, UT Southwestern, Dallas, TX, USA
| | | | - Matthew Sieber
- Department of Physiology, UT Southwestern, Dallas, TX, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, UT Southwestern, Dallas, TX, USA
- Howard Hughes Medical Institute, UT Southwestern, Dallas, TX, USA
| | | |
Collapse
|
8
|
Li Y, Chitturi J, Yu B, Zhang Y, Wu J, Ti P, Hung W, Zhen M, Gao S. UBR-1 ubiquitin ligase regulates the balance between GABAergic and glutamatergic signaling. EMBO Rep 2023; 24:e57014. [PMID: 37811674 PMCID: PMC10626437 DOI: 10.15252/embr.202357014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
Excitation/inhibition (E/I) balance is carefully maintained by the nervous system. The neurotransmitter GABA has been reported to be co-released with its sole precursor, the neurotransmitter glutamate. The genetic and circuitry mechanisms to establish the balance between GABAergic and glutamatergic signaling have not been fully elucidated. Caenorhabditis elegans DVB is an excitatory GABAergic motoneuron that drives the expulsion step in the defecation motor program. We show here that in addition to UNC-47, the vesicular GABA transporter, DVB also expresses EAT-4, a vesicular glutamate transporter. UBR-1, a conserved ubiquitin ligase, regulates DVB activity by suppressing a bidirectional inhibitory glutamate signaling. Loss of UBR-1 impairs DVB Ca2+ activity and expulsion frequency. These impairments are fully compensated by the knockdown of EAT-4 in DVB. Further, glutamate-gated chloride channels GLC-3 and GLC-2/4 receive DVB's glutamate signals to inhibit DVB and enteric muscle activity, respectively. These results implicate an intrinsic cellular mechanism that promotes the inherent asymmetric neural activity. We propose that elevated glutamate in ubr-1 mutants, being the cause of the E/I shift, potentially contributes to Johanson Blizzard syndrome.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Jyothsna Chitturi
- Lunenfeld‐Tanenbaum Research Institute, Mount Sinai HospitalUniversity of TorontoTorontoONCanada
| | - Bin Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Yongning Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Jing Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Panpan Ti
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Wesley Hung
- Lunenfeld‐Tanenbaum Research Institute, Mount Sinai HospitalUniversity of TorontoTorontoONCanada
| | - Mei Zhen
- Lunenfeld‐Tanenbaum Research Institute, Mount Sinai HospitalUniversity of TorontoTorontoONCanada
| | - Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Vascular Aging of the Ministry of Education, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
9
|
Shinoda N, Horikoshi M, Taira Y, Muramoto M, Hirayama S, Murata S, Miura M. Caspase cleaves Drosophila BubR1 to modulate spindle assembly checkpoint function and lifespan of the organism. FEBS J 2023; 290:4200-4223. [PMID: 37151120 DOI: 10.1111/febs.16811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/23/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Caspases cleave over 1500 substrates in the human proteome in both lethal and non-lethal scenarios. However, reports of the physiological consequences of substrate cleavage are limited. Additionally, the manner in which caspase cleaves only a subset of substrates in the non-lethal scenario remains to be elucidated. BubR1, a spindle assembly checkpoint component, is a caspase substrate in humans, the physiological function of which remains unclear. Here, we found that caspases, especially Drice, cleave Drosophila BubR1 between the N-terminal KEN box motif and C-terminal kinase domain. By using proximity labelling, we found that Drice, but not Dcp-1, is in proximity to BubR1, suggesting that protein proximity facilitates substrate preference. The cleaved fragments displayed altered subcellular localization and protein-protein interactions. Flies that harboured cleavage-resistant BubR1 showed longer duration of BubR1 localization to the kinetochore upon colchicine treatment. Furthermore, these flies showed extended lifespan. Thus, we propose that the caspase-mediated cleavage of BubR1 limits spindle assembly checkpoint and organismal lifespan. Our results highlight the importance of the individual analysis of substrates in vivo to determine the biological significance of caspase-dependent non-lethal cellular processes.
Collapse
Affiliation(s)
- Natsuki Shinoda
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Misuzu Horikoshi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Yusuke Taira
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Masaya Muramoto
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Shoshiro Hirayama
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
10
|
Yuan W, Weaver YM, Earnest S, Taylor CA, Cobb MH, Weaver BP. Modulating p38 MAPK signaling by proteostasis mechanisms supports tissue integrity during growth and aging. Nat Commun 2023; 14:4543. [PMID: 37507441 PMCID: PMC10382525 DOI: 10.1038/s41467-023-40317-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
The conserved p38 MAPK family is activated by phosphorylation during stress responses and inactivated by phosphatases. C. elegans PMK-1 p38 MAPK initiates innate immune responses and blocks development when hyperactivated. Here we show that PMK-1 signaling is enhanced during early aging by modulating the stoichiometry of non-phospho-PMK-1 to promote tissue integrity and longevity. Loss of pmk-1 function accelerates progressive declines in neuronal integrity and lysosome function compromising longevity which has both cell autonomous and cell non-autonomous contributions. CED-3 caspase cleavage limits phosphorylated PMK-1. Enhancing p38 signaling with caspase cleavage-resistant PMK-1 protects lysosomal and neuronal integrity extending a youthful phase. PMK-1 works through a complex transcriptional program to regulate lysosome formation. During early aging, the absolute phospho-p38 amount is maintained but the reservoir of non-phospho-p38 diminishes to enhance signaling without hyperactivation. Our findings show that modulating the stoichiometry of non-phospho-p38 dynamically supports tissue-homeostasis during aging without hyper-activation of stress response.
Collapse
Affiliation(s)
- Wang Yuan
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yi M Weaver
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Svetlana Earnest
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Clinton A Taylor
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Melanie H Cobb
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin P Weaver
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
11
|
Hill C, Dellar ER, Baena‐Lopez LA. Caspases help to spread the message via extracellular vesicles. FEBS J 2023; 290:1954-1972. [PMID: 35246932 PMCID: PMC10952732 DOI: 10.1111/febs.16418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 11/27/2022]
Abstract
Cell-cell communication is an essential aspect of multicellular life, key for coordinating cell proliferation, growth, and death in response to environmental changes. Whilst caspases are well-known for facilitating apoptotic and pyroptotic cell death, several recent investigations are uncovering new roles for these enzymes in biological scenarios requiring long-range intercellular signalling mediated by extracellular vesicles (EVs). EVs are small membrane-bound nanoparticles released from cells that may carry and deliver cargo between distant cells, thus helping to coordinate their behaviour. Intriguingly, there is emerging evidence indicating a key contribution of caspases in the biogenesis of EVs, the selection of their cargo content, and EV uptake/function in recipient cells. Here, we discuss the latest findings supporting the interplay between caspases and EVs, and the biological relevance of this molecular convergence for cellular signalling, principally in non-apoptotic scenarios.
Collapse
Affiliation(s)
- Claire Hill
- Sir William Dunn School of PathologyUniversity of OxfordUK
| | - Elizabeth R. Dellar
- Sir William Dunn School of PathologyUniversity of OxfordUK
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordUK
| | | |
Collapse
|
12
|
Caspase Inhibition Modulates Monocyte-Derived Macrophage Polarization in Damaged Tissues. Int J Mol Sci 2023; 24:ijms24044151. [PMID: 36835566 PMCID: PMC9964254 DOI: 10.3390/ijms24044151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Circulating monocytes are recruited in damaged tissues to generate macrophages that modulate disease progression. Colony-stimulating factor-1 (CSF-1) promotes the generation of monocyte-derived macrophages, which involves caspase activation. Here, we demonstrate that activated caspase-3 and caspase-7 are located to the vicinity of the mitochondria in CSF1-treated human monocytes. Active caspase-7 cleaves p47PHOX at aspartate 34, which promotes the formation of the NADPH (nicotinamide adenine dinucleotide phosphate) oxidase complex NOX2 and the production of cytosolic superoxide anions. Monocyte response to CSF-1 is altered in patients with a chronic granulomatous disease, which are constitutively defective in NOX2. Both caspase-7 down-regulation and radical oxygen species scavenging decrease the migration of CSF-1-induced macrophages. Inhibition or deletion of caspases prevents the development of lung fibrosis in mice exposed to bleomycin. Altogether, a non-conventional pathway that involves caspases and activates NOX2 is involved in CSF1-driven monocyte differentiation and could be therapeutically targeted to modulate macrophage polarization in damaged tissues.
Collapse
|
13
|
Guenette RG, Potts PR. High throughput E3 ligase degron binding assays for novel PROTAC ligand discovery. Methods Enzymol 2023; 681:23-39. [PMID: 36764759 DOI: 10.1016/bs.mie.2022.08.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The discovery of new small molecule ligands for E3 ligases will enable the creation of novel proteolysis targeting chimeras (PROTACs) and molecular glues to tackle traditionally undruggable proteins. Diversifying both the chemical matter for each E3 ligase and the type of ligases will be important to fully capture the potential of these targeted protein degradation modalities. A key step in this process is to establish an integrated screening platform for the rapid identification and optimization of small molecule ligands for E3 ligases. Here, we provide a method to evaluate E3 ligase ligands using AlphaScreen technology. AlphaScreen allows for the evaluation of a wide array of molecular interactions and is utilized extensively in small molecule screening campaigns. This bead-based proximity technology offers facile development for interactions across a wide range of affinities and can be adapted to interrogate E3 ligase-degron interactions. In this protocol, we demonstrate the development of AlphaScreen for E3 ligase ligand competition assays toward the discovery of new ligands for E3 ligases.
Collapse
Affiliation(s)
- Robert G Guenette
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA, United States
| | - Patrick Ryan Potts
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA, United States.
| |
Collapse
|
14
|
Bolgi O, Silva‐Garcia M, Ross B, Pilla E, Kari V, Killisch M, Spitzner M, Stark N, Lenz C, Weiss K, Donzelli L, Gorrell MD, Grade M, Riemer J, Urlaub H, Dobbelstein M, Huber R, Geiss‐Friedlander R. Dipeptidyl peptidase 9 triggers BRCA2 degradation and promotes DNA damage repair. EMBO Rep 2022; 23:e54136. [PMID: 35912982 PMCID: PMC9535758 DOI: 10.15252/embr.202154136] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/30/2022] Open
Abstract
N-terminal sequences are important sites for post-translational modifications that alter protein localization, activity, and stability. Dipeptidyl peptidase 9 (DPP9) is a serine aminopeptidase with the rare ability to cleave off N-terminal dipeptides with imino acid proline in the second position. Here, we identify the tumor-suppressor BRCA2 as a DPP9 substrate and show this interaction to be induced by DNA damage. We present crystallographic structures documenting intracrystalline enzymatic activity of DPP9, with the N-terminal Met1-Pro2 of a BRCA21-40 peptide captured in its active site. Intriguingly, DPP9-depleted cells are hypersensitive to genotoxic agents and are impaired in the repair of DNA double-strand breaks by homologous recombination. Mechanistically, DPP9 targets BRCA2 for degradation and promotes the formation of RAD51 foci, the downstream function of BRCA2. N-terminal truncation mutants of BRCA2 that mimic a DPP9 product phenocopy reduced BRCA2 stability and rescue RAD51 foci formation in DPP9-deficient cells. Taken together, we present DPP9 as a regulator of BRCA2 stability and propose that by fine-tuning the cellular concentrations of BRCA2, DPP9 alters the BRCA2 interactome, providing a possible explanation for DPP9's role in cancer.
Collapse
Affiliation(s)
- Oguz Bolgi
- Institute of Molecular Medicine and Cell Research, Medical FacultyUniversity of FreiburgFreiburgGermany
- Department of Molecular BiologyUniversity Medical Center GöttingenGöttingenGermany
| | - Maria Silva‐Garcia
- Department of Molecular BiologyUniversity Medical Center GöttingenGöttingenGermany
| | - Breyan Ross
- Max Planck Institut für BiochemieMartinsriedGermany
- Proteros Biostructures GmbHMartinsriedGermany
| | - Esther Pilla
- Department of Molecular BiologyUniversity Medical Center GöttingenGöttingenGermany
| | - Vijayalakshmi Kari
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center GöttingenGöttingenGermany
| | - Markus Killisch
- Department of Molecular BiologyUniversity Medical Center GöttingenGöttingenGermany
| | - Melanie Spitzner
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center GöttingenGöttingenGermany
| | - Nadine Stark
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB)University Medical Center GöttingenGöttingenGermany
| | - Christof Lenz
- Bioanalytics, Institute of Clinical ChemistryUniversity Medical CenterGöttingenGermany
- Bioanalytical Mass Spectrometry GroupMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Konstantin Weiss
- Institute of Biochemistry, Redox Biochemistry, and Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Laura Donzelli
- Institute of Molecular Medicine and Cell Research, Medical FacultyUniversity of FreiburgFreiburgGermany
| | - Mark D Gorrell
- Centenary InstituteThe University of Sydney Faculty of Medicine and HealthSydneyNSWAustralia
| | - Marian Grade
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center GöttingenGöttingenGermany
| | - Jan Riemer
- Institute of Biochemistry, Redox Biochemistry, and Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Henning Urlaub
- Bioanalytics, Institute of Clinical ChemistryUniversity Medical CenterGöttingenGermany
- Bioanalytical Mass Spectrometry GroupMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB)University Medical Center GöttingenGöttingenGermany
| | - Robert Huber
- Max Planck Institut für BiochemieMartinsriedGermany
- Zentrum für Medizinische BiotechnologieUniversität Duisburg‐EssenEssenGermany
- Fakultät für ChemieTechnische Universität MünchenGarchingGermany
| | - Ruth Geiss‐Friedlander
- Institute of Molecular Medicine and Cell Research, Medical FacultyUniversity of FreiburgFreiburgGermany
- Department of Molecular BiologyUniversity Medical Center GöttingenGöttingenGermany
| |
Collapse
|
15
|
Fausett S, Poullet N, Gimond C, Vielle A, Bellone M, Braendle C. Germ cell apoptosis is critical to maintain Caenorhabditis elegans offspring viability in stressful environments. PLoS One 2021; 16:e0260573. [PMID: 34879088 PMCID: PMC8654231 DOI: 10.1371/journal.pone.0260573] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 11/12/2021] [Indexed: 12/18/2022] Open
Abstract
Maintaining reproduction in highly variable, often stressful, environments is an essential challenge for all organisms. Even transient exposure to mild environmental stress may directly damage germ cells or simply tax the physiology of an individual, making it difficult to produce quality gametes. In Caenorhabditis elegans, a large fraction of germ cells acts as nurse cells, supporting developing oocytes before eventually undergoing so-called physiological germ cell apoptosis. Although C. elegans apoptosis has been extensively studied, little is known about how germline apoptosis is influenced by ecologically relevant environmental stress. Moreover, it remains unclear to what extent germline apoptosis contributes to maintaining oocyte quality, and thus offspring viability, in such conditions. Here we show that exposure to diverse environmental stressors, likely occurring in the natural C. elegans habitat (starvation, ethanol, acid, and mild oxidative stress), increases germline apoptosis, consistent with previous reports on stress-induced apoptosis. Using loss-of-function mutant alleles of ced-3 and ced-4, we demonstrate that eliminating the core apoptotic machinery strongly reduces embryonic survival when mothers are exposed to such environmental stressors during early adult life. In contrast, mutations in ced-9 and egl-1 that primarily block apoptosis in the soma but not in the germline, did not exhibit such reduced embryonic survival under environmental stress. Therefore, C. elegans germ cell apoptosis plays an essential role in maintaining offspring fitness in adverse environments. Finally, we show that ced-3 and ced-4 mutants exhibit concomitant decreases in embryo size and changes in embryo shape when mothers are exposed to environmental stress. These observations may indicate inadequate oocyte provisioning due to the absence of germ cell apoptosis. Taken together, our results show that the central genes of the apoptosis pathway play a key role in maintaining gamete quality, and thus offspring fitness, under ecologically relevant environmental conditions.
Collapse
Affiliation(s)
- Sarah Fausett
- Université Côte d’Azur, CNRS, Inserm, IBV, Nice, France
| | | | | | - Anne Vielle
- Université Côte d’Azur, CNRS, Inserm, IBV, Nice, France
| | | | | |
Collapse
|
16
|
Jiang HS, Ghose P, Han HF, Wu YZ, Tsai YY, Lin HC, Tseng WC, Wu JC, Shaham S, Wu YC. BLMP-1 promotes developmental cell death in C. elegans by timely repression of ced-9 transcription. Development 2021; 148:dev193995. [PMID: 34541605 PMCID: PMC8572009 DOI: 10.1242/dev.193995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/14/2021] [Indexed: 11/20/2022]
Abstract
Programmed cell death (PCD) is a common cell fate in metazoan development. PCD effectors are extensively studied, but how they are temporally regulated is less understood. Here, we report a mechanism controlling tail-spike cell death onset during Caenorhabditis elegans development. We show that the zinc-finger transcription factor BLMP-1, which controls larval development timing, also regulates embryonic tail-spike cell death initiation. BLMP-1 functions upstream of CED-9 and in parallel to DRE-1, another CED-9 and tail-spike cell death regulator. BLMP-1 expression is detected in the tail-spike cell shortly after the cell is born, and blmp-1 mutations promote ced-9-dependent tail-spike cell survival. BLMP-1 binds ced-9 gene regulatory sequences, and inhibits ced-9 transcription just before cell-death onset. BLMP-1 and DRE-1 function together to regulate developmental timing, and their mammalian homologs regulate B-lymphocyte fate. Our results, therefore, identify roles for developmental timing genes in cell-death initiation, and suggest conservation of these functions.
Collapse
Affiliation(s)
- Hang-Shiang Jiang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106216, Taiwan
| | - Piya Ghose
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY 10065, USA
- Department of Biology, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Hsiao-Fen Han
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106216, Taiwan
| | - Yun-Zhe Wu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106216, Taiwan
| | - Ya-Yin Tsai
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106216, Taiwan
| | - Huang-Chin Lin
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106216, Taiwan
| | - Wei-Chin Tseng
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106216, Taiwan
| | - Jui-Ching Wu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 100229, Taiwan
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Yi-Chun Wu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106216, Taiwan
- Department of Life Science, Center for Systems Biology, and Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 106216, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106216, Taiwan
| |
Collapse
|
17
|
Mishra N, Heisenberg CP. Dissecting Organismal Morphogenesis by Bridging Genetics and Biophysics. Annu Rev Genet 2021; 55:209-233. [PMID: 34460295 DOI: 10.1146/annurev-genet-071819-103748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multicellular organisms develop complex shapes from much simpler, single-celled zygotes through a process commonly called morphogenesis. Morphogenesis involves an interplay between several factors, ranging from the gene regulatory networks determining cell fate and differentiation to the mechanical processes underlying cell and tissue shape changes. Thus, the study of morphogenesis has historically been based on multidisciplinary approaches at the interface of biology with physics and mathematics. Recent technological advances have further improved our ability to study morphogenesis by bridging the gap between the genetic and biophysical factors through the development of new tools for visualizing, analyzing, and perturbing these factors and their biochemical intermediaries. Here, we review how a combination of genetic, microscopic, biophysical, and biochemical approaches has aided our attempts to understand morphogenesis and discuss potential approaches that may be beneficial to such an inquiry in the future. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Nikhil Mishra
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria; ,
| | | |
Collapse
|
18
|
Great balls of fire: activation and signalling of inflammatory caspases. Biochem Soc Trans 2021; 49:1311-1324. [PMID: 34060593 PMCID: PMC8286819 DOI: 10.1042/bst20200986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 11/17/2022]
Abstract
Innate immune responses are tightly regulated by various pathways to control infections and maintain homeostasis. One of these pathways, the inflammasome pathway, activates a family of cysteine proteases called inflammatory caspases. They orchestrate an immune response by cleaving specific cellular substrates. Canonical inflammasomes activate caspase-1, whereas non-canonical inflammasomes activate caspase-4 and -5 in humans and caspase-11 in mice. Caspases are highly specific enzymes that select their substrates through diverse mechanisms. During inflammation, caspase activity is responsible for the secretion of inflammatory cytokines and the execution of a form of lytic and inflammatory cell death called pyroptosis. This review aims to bring together our current knowledge of the biochemical processes behind inflammatory caspase activation, substrate specificity, and substrate signalling.
Collapse
|
19
|
Vu TTM, Varshavsky A. The ATF3 Transcription Factor Is a Short-Lived Substrate of the Arg/N-Degron Pathway. Biochemistry 2020; 59:2796-2812. [PMID: 32692156 DOI: 10.1021/acs.biochem.0c00514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Arg/N-degron pathway targets proteins for degradation by recognizing their specific N-terminal residues or, alternatively, their non-N-terminal degrons. In mammals, this pathway is mediated by the UBR1, UBR2, UBR4, and UBR5 E3 ubiquitin ligases, and by the p62 regulator of autophagy. UBR1 and UBR2 are sequelogous, functionally overlapping, and dominate the targeting of Arg/N-degron substrates in examined cell lines. We constructed, here, mouse strains in which the double mutant [UBR1-/- UBR2-/-] genotype can be induced conditionally, in adult mice. We also constructed human [UBR1-/- UBR2-/-] HEK293T cell lines that unconditionally lack UBR1/UBR2. ATF3 is a basic leucine zipper transcription factor that regulates hundreds of genes and can act as either a repressor or an activator of transcription. Using the above double-mutant mice and human cells, we found that the levels of endogenous, untagged ATF3 were significantly higher in both of these [UBR1-/- UBR2-/-] settings than in wild-type cells. We also show, through chase-degradation assays with [UBR1-/- UBR2-/-] and wild-type human cells, that the Arg/N-degron pathway mediates a large fraction of ATF3 degradation. Furthermore, we used split-ubiquitin and another protein interaction assay to detect the binding of ATF3 to both UBR1 and UBR2, in agreement with the UBR1/UBR2-mediated degradation of endogenous ATF3. Full-length 24 kDa ATF3 binds to ∼100 kDa fragments of 200 kDa UBR1 and UBR2 but does not bind (in the setting of interaction assays) to full-length UBR1/UBR2. These and other binding patterns, whose mechanics remain to be understood, may signify a conditional (regulated) degradation of ATF3 by the Arg/N-degron pathway.
Collapse
Affiliation(s)
- Tri T M Vu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Alexander Varshavsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
20
|
Dong C, Chen SJ, Melnykov A, Weirich S, Sun K, Jeltsch A, Varshavsky A, Min J. Recognition of nonproline N-terminal residues by the Pro/N-degron pathway. Proc Natl Acad Sci U S A 2020; 117:14158-14167. [PMID: 32513738 PMCID: PMC7322002 DOI: 10.1073/pnas.2007085117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Eukaryotic N-degron pathways are proteolytic systems whose unifying feature is their ability to recognize proteins containing N-terminal (Nt) degradation signals called N-degrons, and to target these proteins for degradation by the 26S proteasome or autophagy. GID4, a subunit of the GID ubiquitin ligase, is the main recognition component of the proline (Pro)/N-degron pathway. GID4 targets proteins through their Nt-Pro residue or a Pro at position 2, in the presence of specific downstream sequence motifs. Here we show that human GID4 can also recognize hydrophobic Nt-residues other than Pro. One example is the sequence Nt-IGLW, bearing Nt-Ile. Nt-IGLW binds to wild-type human GID4 with a Kd of 16 μM, whereas the otherwise identical Nt-Pro-bearing sequence PGLW binds to GID4 more tightly, with a Kd of 1.9 μM. Despite this difference in affinities of GID4 for Nt-IGLW vs. Nt-PGLW, we found that the GID4-mediated Pro/N-degron pathway of the yeast Saccharomyces cerevisiae can target an Nt-IGLW-bearing protein for rapid degradation. We solved crystal structures of human GID4 bound to a peptide bearing Nt-Ile or Nt-Val. We also altered specific residues of human GID4 and measured the affinities of resulting mutant GID4s for Nt-IGLW and Nt-PGLW, thereby determining relative contributions of specific GID4 residues to the GID4-mediated recognition of Nt-Pro vs. Nt-residues other than Pro. These and related results advance the understanding of targeting by the Pro/N-degron pathway and greatly expand the substrate recognition range of the GID ubiquitin ligase in both human and yeast cells.
Collapse
Affiliation(s)
- Cheng Dong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, People's Republic of China
| | - Shun-Jia Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | | | - Sara Weirich
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University Stuttgart, 70569 Stuttgart, Germany
| | - Kelly Sun
- Structural Genomics Consortium, Department of Physiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University Stuttgart, 70569 Stuttgart, Germany
| | - Alexander Varshavsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125;
| | - Jinrong Min
- Structural Genomics Consortium, Department of Physiology, University of Toronto, Toronto, ON M5G 1L7, Canada;
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079 Wuhan, People's Republic of China
| |
Collapse
|
21
|
Five enzymes of the Arg/N-degron pathway form a targeting complex: The concept of superchanneling. Proc Natl Acad Sci U S A 2020; 117:10778-10788. [PMID: 32366662 DOI: 10.1073/pnas.2003043117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Arg/N-degron pathway targets proteins for degradation by recognizing their N-terminal (Nt) residues. If a substrate bears, for example, Nt-Asn, its targeting involves deamidation of Nt-Asn, arginylation of resulting Nt-Asp, binding of resulting (conjugated) Nt-Arg to the UBR1-RAD6 E3-E2 ubiquitin ligase, ligase-mediated synthesis of a substrate-linked polyubiquitin chain, its capture by the proteasome, and substrate's degradation. We discovered that the human Nt-Asn-specific Nt-amidase NTAN1, Nt-Gln-specific Nt-amidase NTAQ1, arginyltransferase ATE1, and the ubiquitin ligase UBR1-UBE2A/B (or UBR2-UBE2A/B) form a complex in which NTAN1 Nt-amidase binds to NTAQ1, ATE1, and UBR1/UBR2. In addition, NTAQ1 Nt-amidase and ATE1 arginyltransferase also bind to UBR1/UBR2. In the yeast Saccharomyces cerevisiae, the Nt-amidase, arginyltransferase, and the double-E3 ubiquitin ligase UBR1-RAD6/UFD4-UBC4/5 are shown to form an analogous targeting complex. These complexes may enable substrate channeling, in which a substrate bearing, for example, Nt-Asn, would be captured by a complex-bound Nt-amidase, followed by sequential Nt modifications of the substrate and its polyubiquitylation at an internal Lys residue without substrate's dissociation into the bulk solution. At least in yeast, the UBR1/UFD4 ubiquitin ligase interacts with the 26S proteasome, suggesting an even larger Arg/N-degron-targeting complex that contains the proteasome as well. In addition, specific features of protein-sized Arg/N-degron substrates, including their partly sequential and partly nonsequential enzymatic modifications, led us to a verifiable concept termed "superchanneling." In superchanneling, the synthesis of a substrate-linked poly-Ub chain can occur not only after a substrate's sequential Nt modifications, but also before them, through a skipping of either some or all of these modifications within a targeting complex.
Collapse
|
22
|
Weaver BP, Weaver YM, Omi S, Yuan W, Ewbank JJ, Han M. Non-Canonical Caspase Activity Antagonizes p38 MAPK Stress-Priming Function to Support Development. Dev Cell 2020; 53:358-369.e6. [PMID: 32302544 PMCID: PMC7641037 DOI: 10.1016/j.devcel.2020.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 11/15/2019] [Accepted: 03/15/2020] [Indexed: 02/02/2023]
Abstract
Recent studies have revealed non-canonical activities of apoptotic caspases involving specific modulation of gene expression, such as limiting asymmetric divisions of stem-like cell types. Here we report that CED-3 caspase negatively regulates an epidermal p38 stress-responsive MAPK pathway to promote larval development in C. elegans. We show that PMK-1 (p38 MAPK) primes animals for encounters with hostile environments at the expense of retarding post-embryonic development. CED-3 counters this function by directly cleaving PMK-1 to promote development. Moreover, we found that CED-3 and PMK-1 oppose each other to balance developmental and stress-responsive gene expression programs. Specifically, expression of more than 300 genes is inversely regulated by CED-3 and PMK-1. Analyses of these genes showed enrichment for epidermal stress-responsive factors, including the fatty acid synthase FASN-1, anti-microbial peptides, and genes involved in lethargus states. Our findings demonstrate a non-canonical role for a caspase in promoting development by limiting epidermal stress response programs.
Collapse
Affiliation(s)
- Benjamin P Weaver
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder and Howard Hughes Medical Institute, Boulder, CO 80309, USA.
| | - Yi M Weaver
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder and Howard Hughes Medical Institute, Boulder, CO 80309, USA
| | - Shizue Omi
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Wang Yuan
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jonathan J Ewbank
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Min Han
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder and Howard Hughes Medical Institute, Boulder, CO 80309, USA
| |
Collapse
|
23
|
Intertwined Functions of Separase and Caspase in Cell Division and Programmed Cell Death. Sci Rep 2020; 10:6159. [PMID: 32273538 PMCID: PMC7145830 DOI: 10.1038/s41598-020-63081-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/05/2020] [Indexed: 11/30/2022] Open
Abstract
Timely sister chromatid separation, promoted by separase, is essential for faithful chromosome segregation. Separase is a member of the CD clan of cysteine proteases, which also includes the pro-apoptotic enzymes known as caspases. We report a role for the C. elegans separase SEP-1, primarily known for its essential activity in cell division and cortical granule exocytosis, in developmentally programmed cell death when the predominant pro-apoptotic caspase CED-3 is compromised. Loss of SEP-1 results in extra surviving cells in a weak ced-3(-) mutant, and suppresses the embryonic lethality of a mutant defective for the apoptotic suppressor ced-9/Bcl-2 implicating SEP-1 in execution of apoptosis. We also report apparent non-apoptotic roles for CED-3 in promoting germ cell proliferation, meiotic chromosome disjunction, egg shell formation, and the normal rate of embryonic development. Moreover, loss of the soma-specific (CSP-3) and germline-specific (CSP-2) caspase inhibitors result in CED-3-dependent suppression of embryonic lethality and meiotic chromosome non-disjunction respectively, when separase function is compromised. Thus, while caspases and separases have evolved different substrate specificities associated with their specialized functions in apoptosis and cell division respectively, they appear to have retained the residual ability to participate in both processes, supporting the view that co-option of components in cell division may have led to the innovation of programmed cell suicide early in metazoan evolution.
Collapse
|
24
|
Melnykov A, Chen SJ, Varshavsky A. Gid10 as an alternative N-recognin of the Pro/N-degron pathway. Proc Natl Acad Sci U S A 2019; 116:15914-15923. [PMID: 31337681 PMCID: PMC6689949 DOI: 10.1073/pnas.1908304116] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In eukaryotes, N-degron pathways (formerly "N-end rule pathways") comprise a set of proteolytic systems whose unifying feature is their ability to recognize proteins containing N-terminal degradation signals called N-degrons, thereby causing degradation of these proteins by the 26S proteasome or autophagy. Gid4, a subunit of the GID ubiquitin ligase in the yeast Saccharomyces cerevisiae, is the recognition component (N-recognin) of the GID-mediated Pro/N-degron pathway. Gid4 targets proteins by recognizing their N-terminal Pro residues or a Pro at position 2, in the presence of distinct adjoining sequence motifs. Under conditions of low or absent glucose, cells make it through gluconeogenesis. When S. cerevisiae grows on a nonfermentable carbon source, its gluconeogenic enzymes Fbp1, Icl1, Mdh2, and Pck1 are expressed and long-lived. Transition to a medium containing glucose inhibits the synthesis of these enzymes and induces their degradation by the Gid4-dependent Pro/N-degron pathway. While studying yeast Gid4, we identified a similar but uncharacterized yeast protein (YGR066C), which we named Gid10. A screen for N-terminal peptide sequences that can bind to Gid10 showed that substrate specificities of Gid10 and Gid4 overlap but are not identical. Gid10 is not expressed under usual (unstressful) growth conditions, but is induced upon starvation or osmotic stresses. Using protein binding analyses and degradation assays with substrates of GID, we show that Gid10 can function as a specific N-recognin of the Pro/N-degron pathway.
Collapse
Affiliation(s)
- Artem Melnykov
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Shun-Jia Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Alexander Varshavsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
25
|
Lawson H, Vuong E, Miller RM, Kiontke K, Fitch DHA, Portman DS. The Makorin lep-2 and the lncRNA lep-5 regulate lin-28 to schedule sexual maturation of the C. elegans nervous system. eLife 2019; 8:e43660. [PMID: 31264582 PMCID: PMC6606027 DOI: 10.7554/elife.43660] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/10/2019] [Indexed: 12/30/2022] Open
Abstract
Sexual maturation must occur on a controlled developmental schedule. In mammals, Makorin3 (MKRN3) and the miRNA regulators LIN28A/B are key regulators of this process, but how they act is unclear. In C. elegans, sexual maturation of the nervous system includes the functional remodeling of postmitotic neurons and the onset of adult-specific behaviors. Here, we find that the lin-28-let-7 axis (the 'heterochronic pathway') determines the timing of these events. Upstream of lin-28, the Makorin lep-2 and the lncRNA lep-5 regulate maturation cell-autonomously, indicating that distributed clocks, not a central timer, coordinate sexual differentiation of the C. elegans nervous system. Overexpression of human MKRN3 delays aspects of C. elegans sexual maturation, suggesting the conservation of Makorin function. These studies reveal roles for a Makorin and a lncRNA in timing of sexual differentiation; moreover, they demonstrate deep conservation of the lin-28-let-7 system in controlling the functional maturation of the nervous system.
Collapse
Affiliation(s)
- Hannah Lawson
- Department of BiologyUniversity of RochesterRochesterUnited States
| | - Edward Vuong
- Department of Biomedical GeneticsUniversity of RochesterRochesterUnited States
| | - Renee M Miller
- Department of Brain and Cognitive SciencesUniversity of RochesterRochesterUnited States
| | - Karin Kiontke
- Center for Developmental Genetics, Department of BiologyNew York UniversityNew YorkUnited States
| | - David HA Fitch
- Center for Developmental Genetics, Department of BiologyNew York UniversityNew YorkUnited States
| | - Douglas S Portman
- Department of BiologyUniversity of RochesterRochesterUnited States
- Department of Biomedical GeneticsUniversity of RochesterRochesterUnited States
- Department of NeuroscienceUniversity of RochesterRochesterUnited States
- DelMonte Institute for NeuroscienceUniversity of RochesterRochesterUnited States
| |
Collapse
|
26
|
The Long Non-Coding RNA lep-5 Promotes the Juvenile-to-Adult Transition by Destabilizing LIN-28. Dev Cell 2019; 49:542-555.e9. [PMID: 30956008 DOI: 10.1016/j.devcel.2019.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 10/02/2018] [Accepted: 03/06/2019] [Indexed: 12/28/2022]
Abstract
Biological roles for most long non-coding RNAs (lncRNAs) remain mysterious. Here, using forward genetics, we identify lep-5, a lncRNA acting in the C. elegans heterochronic (developmental timing) pathway. Loss of lep-5 delays hypodermal maturation and male tail tip morphogenesis (TTM), hallmarks of the juvenile-to-adult transition. We find that lep-5 is a ∼600 nt cytoplasmic RNA that is conserved across Caenorhabditis and possesses three essential secondary structure motifs but no essential open reading frames. lep-5 expression is temporally controlled, peaking prior to TTM onset. Like the Makorin LEP-2, lep-5 facilitates the degradation of LIN-28, a conserved miRNA regulator specifying the juvenile state. Both LIN-28 and LEP-2 associate with lep-5 in vivo, suggesting that lep-5 directly regulates LIN-28 stability and may function as an RNA scaffold. These studies identify a key biological role for a lncRNA: by regulating protein stability, it provides a temporal cue to facilitate the juvenile-to-adult transition.
Collapse
|
27
|
Abstract
This perspective is partly review and partly proposal. N-degrons and C-degrons are degradation signals whose main determinants are, respectively, the N-terminal and C-terminal residues of cellular proteins. N-degrons and C-degrons include, to varying extents, adjoining sequence motifs, and also internal lysine residues that function as polyubiquitylation sites. Discovered in 1986, N-degrons were the first degradation signals in short-lived proteins. A particularly large set of C-degrons was discovered in 2018. We describe multifunctional proteolytic systems that target N-degrons and C-degrons. We also propose to denote these systems as "N-degron pathways" and "C-degron pathways." The former notation replaces the earlier name "N-end rule pathways." The term "N-end rule" was introduced 33 years ago, when only some N-terminal residues were thought to be destabilizing. However, studies over the last three decades have shown that all 20 amino acids of the genetic code can act, in cognate sequence contexts, as destabilizing N-terminal residues. Advantages of the proposed terms include their brevity and semantic uniformity for N-degrons and C-degrons. In addition to being topologically analogous, N-degrons and C-degrons are related functionally. A proteolytic cleavage of a subunit in a multisubunit complex can create, at the same time, an N-degron (in a C-terminal fragment) and a spatially adjacent C-degron (in an N-terminal fragment). Consequently, both fragments of a subunit can be selectively destroyed through attacks by the N-degron and C-degron pathways.
Collapse
|
28
|
Su TT. Cellular plasticity, caspases and autophagy; that which does not kill us, well, makes us different. Open Biol 2018; 8:rsob.180157. [PMID: 30487302 PMCID: PMC6282069 DOI: 10.1098/rsob.180157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023] Open
Abstract
The ability to regenerate is a fundamental requirement for tissue homeostasis. Regeneration draws on three sources of cells. First and best-studied are dedicated stem/progenitor cells. Second, existing cells may proliferate to compensate for the lost cells of the same type. Third, a different cell type may change fate to compensate for the lost cells. This review focuses on regeneration of the third type and will discuss the contributions by post-transcriptional mechanisms including the emerging evidence for cell-autonomous and non-lethal roles of cell death pathways.
Collapse
Affiliation(s)
- Tin Tin Su
- Department of Molecular, Cellular and Developmental Biology, 347 UCB, University of Colorado, Boulder, CO 80309-0347, USA .,University of Colorado Comprehensive Cancer Center, Anschutz Medical Campus, 13001 E. 17th Pl., Aurora, CO 80045, USA
| |
Collapse
|
29
|
Regulating Apoptosis by Degradation: The N-End Rule-Mediated Regulation of Apoptotic Proteolytic Fragments in Mammalian Cells. Int J Mol Sci 2018; 19:ijms19113414. [PMID: 30384441 PMCID: PMC6274719 DOI: 10.3390/ijms19113414] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/24/2018] [Accepted: 10/27/2018] [Indexed: 12/13/2022] Open
Abstract
A pivotal hallmark of some cancer cells is the evasion of apoptotic cell death. Importantly, the initiation of apoptosis often results in the activation of caspases, which, in turn, culminates in the generation of proteolytically-activated protein fragments with potentially new or altered roles. Recent investigations have revealed that the activity of a significant number of the protease-generated, activated, pro-apoptotic protein fragments can be curbed via their selective degradation by the N-end rule degradation pathways. Of note, previous work revealed that several proteolytically-generated, pro-apoptotic fragments are unstable in cells, as their destabilizing N-termini target them for proteasomal degradation via the N-end rule degradation pathways. Remarkably, previous studies also showed that the proteolytically-generated anti-apoptotic Lyn kinase protein fragment is targeted for degradation by the UBR1/UBR2 E3 ubiquitin ligases of the N-end rule pathway in chronic myeloid leukemia cells. Crucially, the degradation of cleaved fragment of Lyn by the N-end rule counters imatinib resistance in these cells, implicating a possible linkage between the N-end rule degradation pathway and imatinib resistance. Herein, we highlight recent studies on the role of the N-end rule proteolytic pathways in regulating apoptosis in mammalian cells, and also discuss some possible future directions with respect to apoptotic proteolysis signaling.
Collapse
|
30
|
Baena-Lopez LA, Arthurton L, Xu DC, Galasso A. Non-apoptotic Caspase regulation of stem cell properties. Semin Cell Dev Biol 2018; 82:118-126. [PMID: 29102718 PMCID: PMC6191935 DOI: 10.1016/j.semcdb.2017.10.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/23/2017] [Accepted: 10/31/2017] [Indexed: 12/13/2022]
Abstract
The evolutionarily conserved family of proteins called caspases are the main factors mediating the orchestrated programme of cell suicide known as apoptosis. Since this protein family was associated with this essential biological function, the majority of scientific efforts were focused towards understanding their molecular activation and function during cell death. However, an emerging body of evidence has highlighted a repertoire of non-lethal roles within a large variety of cell types, including stem cells. Here we intend to provide a comprehensive overview of the key role of caspases as regulators of stem cell properties. Finally, we briefly discuss the possible pathological consequences of caspase malfunction in stem cells, and the therapeutic potential of caspase regulation applied to this context.
Collapse
Affiliation(s)
| | - Lewis Arthurton
- University of Oxford, Sir William Dunn School of Pathology, Oxford, OX13RE, United Kingdom
| | - Derek Cui Xu
- University of Oxford, Sir William Dunn School of Pathology, Oxford, OX13RE, United Kingdom
| | - Alessia Galasso
- University of Oxford, Sir William Dunn School of Pathology, Oxford, OX13RE, United Kingdom
| |
Collapse
|
31
|
Tang HM, Tang HL. Anastasis: recovery from the brink of cell death. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180442. [PMID: 30839720 PMCID: PMC6170572 DOI: 10.1098/rsos.180442] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/23/2018] [Indexed: 05/11/2023]
Abstract
Anastasis is a natural cell recovery phenomenon that rescues cells from the brink of death. Programmed cell death such as apoptosis has been traditionally assumed to be an intrinsically irreversible cascade that commits cells to a rapid and massive demolition. Interestingly, recent studies have demonstrated recovery of dying cells even at the late stages generally considered immutable. Here, we examine the evidence for anastasis in cultured cells and in animals, review findings illuminating the potential mechanisms of action, discuss the challenges of studying anastasis and explore new strategies to uncover the function and regulation of anastasis, the identification of which has wide-ranging physiological, pathological and therapeutic implications.
Collapse
Affiliation(s)
- Ho Man Tang
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- School of Life Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ho Lam Tang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
32
|
The UBR-1 ubiquitin ligase regulates glutamate metabolism to generate coordinated motor pattern in Caenorhabditis elegans. PLoS Genet 2018; 14:e1007303. [PMID: 29649217 PMCID: PMC5931689 DOI: 10.1371/journal.pgen.1007303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/02/2018] [Accepted: 03/08/2018] [Indexed: 12/14/2022] Open
Abstract
UBR1 is an E3 ubiquitin ligase best known for its ability to target protein degradation by the N-end rule. The physiological functions of UBR family proteins, however, remain not fully understood. We found that the functional loss of C. elegans UBR-1 leads to a specific motor deficit: when adult animals generate reversal movements, A-class motor neurons exhibit synchronized activation, preventing body bending. This motor deficit is rescued by removing GOT-1, a transaminase that converts aspartate to glutamate. Both UBR-1 and GOT-1 are expressed and critically required in premotor interneurons of the reversal motor circuit to regulate the motor pattern. ubr-1 and got-1 mutants exhibit elevated and decreased glutamate level, respectively. These results raise an intriguing possibility that UBR proteins regulate glutamate metabolism, which is critical for neuronal development and signaling. Ubiquitin-mediated protein degradation is central to diverse biological processes. The selection of substrates for degradation is carried out by the E3 ubiquitin ligases, which target specific groups of proteins for ubiquitination. The human genome encodes hundreds of E3 ligases; many exhibit sequence conservation across animal species, including one such ligase called UBR1. Patients carrying mutations in UBR1 exhibit severe systemic defects, but the biology behinds UBR1’s physiological function remains elusive. Here we found that the C. elegans UBR-1 regulates glutamate level. When UBR-1 is defective, C. elegans exhibits increased glutamate; this leads to synchronization of motor neuron activity, hence defective locomotion when animals reach adulthood. UBR1-mediated glutamate metabolism may contribute to the physiological defects of UBR1 mutations.
Collapse
|
33
|
Tang HM, Fung MC, Tang HL. Detecting Anastasis In Vivo by CaspaseTracker Biosensor. J Vis Exp 2018. [PMID: 29443051 DOI: 10.3791/54107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Anastasis (Greek for "rising to life") is a recently discovered cell recovery phenomenon whereby dying cells can reverse late-stage cell death processes that are generally assumed to be intrinsically irreversible. Promoting anastasis could in principle rescue or preserve injured cells that are difficult to replace such as cardiomyocytes or neurons, thereby facilitating tissue recovery. Conversely, suppressing anastasis in cancer cells, undergoing apoptosis after anti-cancer therapies, may ensure cancer cell death and reduce the chances of recurrence. However, these studies have been hampered by the lack of tools for tracking the fate of cells that undergo anastasis in live animals. The challenge is to identify the cells that have reversed the cell death process despite their morphologically normal appearance after recovery. To overcome this difficulty, we have developed Drosophila and mammalian CaspaseTracker biosensor systems that can identify and permanently track the anastatic cells in vitro or in vivo. Here, we present in vivo protocols for the generation and use of the CaspaseTracker dual biosensor system to detect and track anastasis in Drosophila melanogaster after transient exposure to cell death stimuli. While conventional biosensors and protocols can label cells actively undergoing apoptotic cell death, the CaspaseTracker biosensor can permanently label cells that have recovered after caspase activation - a hallmark of late-stage apoptosis, and simultaneously identify active apoptotic processes. This biosensor can also track the recovery of the cells that attempted other forms of cell death that directly or indirectly involved caspase activity. Therefore, this protocol enables us to continuously track the fate of these cells and their progeny, facilitating future studies of the biological functions, molecular mechanisms, physiological and pathological consequences, and therapeutic implications of anastasis. We also discuss the appropriate controls to distinguish cells that undergo anastasis from those that display non-apoptotic caspase activity in vivo.
Collapse
Affiliation(s)
- Ho Man Tang
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine; School of Life Sciences, Chinese University of Hong Kong;
| | - Ming Chiu Fung
- School of Life Sciences, Chinese University of Hong Kong;
| | - Ho Lam Tang
- Department of Neurosurgery, Johns Hopkins University School of Medicine;
| |
Collapse
|
34
|
Eldeeb MA, Leitao LCA, Fahlman RP. Emerging branches of the N-end rule pathways are revealing the sequence complexities of N-termini dependent protein degradation. Biochem Cell Biol 2017; 96:289-294. [PMID: 29253354 DOI: 10.1139/bcb-2017-0274] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The N-end rule links the identity of the N-terminal amino acid of a protein to its in vivo half-life, as some N-terminal residues confer metabolic instability to a protein via their recognition by the cellular machinery that targets them for degradation. Since its discovery, the N-end rule has generally been defined as set of rules of whether an N-terminal residue is stabilizing or not. However, recent studies are revealing that the N-terminal code of amino acids conferring protein instability is more complex than previously appreciated, as recent investigations are revealing that the identity of adjoining downstream residues can also influence the metabolic stability of N-end rule substrate. This is exemplified by the recent discovery of a new branch of N-end rule pathways that target proteins bearing N-terminal proline. In addition, recent investigations are demonstrating that the molecular machinery in N-termini dependent protein degradation may also target proteins for lysosomal degradation, in addition to proteasome-dependent degradation. Herein, we describe some of the recent advances in N-end rule pathways and discuss some of the implications regarding the emerging additional sequence requirements.
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- a Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.,b Department of Chemistry, Faculty of Science, Cairo University, Giza, Cairo, Egypt
| | - Luana C A Leitao
- a Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Richard P Fahlman
- a Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.,c Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
35
|
Burgon PG, Megeney LA. Caspase signaling, a conserved inductive cue for metazoan cell differentiation. Semin Cell Dev Biol 2017; 82:96-104. [PMID: 29129746 DOI: 10.1016/j.semcdb.2017.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 12/16/2022]
Abstract
Caspase signaling pathways were originally discovered as conveyors of programmed cell death, yet a compendium of research over the past two decades have demonstrated that these same conduits have a plethora of physiologic functions. Arguably the most extensive non-death activity that has been attributed to this protease clade is the capacity to induce cell differentiation. Caspase control of differentiation is conserved across diverse metazoan organisms from flies to humans, suggesting an ancient origin for this form of cell fate control. Here we discuss the mechanisms by which caspase enzymes manage differentiation, the targeted substrates that may be common across cell lineages, and the countervailing signals that may be essential for these proteases to 'execute' this non-death cell fate.
Collapse
Affiliation(s)
- Patrick G Burgon
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Medicine, Division of Cardiology, University of Ottawa, Ottawa, Ontario, Canada.
| | - Lynn A Megeney
- Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Medicine, Division of Cardiology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
36
|
Weaver BP, Han M. Tag team: Roles of miRNAs and Proteolytic Regulators in Ensuring Robust Gene Expression Dynamics. Trends Genet 2017; 34:21-29. [PMID: 29037438 DOI: 10.1016/j.tig.2017.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/17/2017] [Accepted: 09/25/2017] [Indexed: 01/18/2023]
Abstract
Lack of prominent developmental defects arising from loss of many individual miRNAs is consistent with the observations of collaborative networks between miRNAs and roles for miRNAs in regulating stress responses. However, these characteristics may only partially explain the seemingly nonessential nature of many miRNAs. Non-miRNA gene expression regulatory mechanisms also collaborate with miRNA-induced silencing complex (miRISC) to support robust gene expression dynamics. Genetic enhancer screens have revealed roles of miRNAs and other gene repressive mechanisms in development or other cellular processes that were masked by genetic redundancy. Besides discussing the breadth of the non-miRNA genes, we use LIN-28 as an example to illustrate how distinct regulatory systems, including miRNAs and multiple protein stability mechanisms, work at different levels to target expression of a given gene and provide tissue-specific and stage-specific regulation of gene expression.
Collapse
Affiliation(s)
- Benjamin P Weaver
- The Howard Hughes Medical Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| | - Min Han
- The Howard Hughes Medical Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
37
|
Conradt B. Partners in Crime. Dev Cell 2017; 41:573-574. [PMID: 28633011 DOI: 10.1016/j.devcel.2017.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Caspases have apoptotic and non-apoptotic functions, both of which depend on their abilities to cleave proteins at specific sites. What distinguishes apoptotic from non-apoptotic substrates has so far been unclear. In this issue of Developmental Cell, Weaver et al. (2017) now provide an answer to this crucial question.
Collapse
Affiliation(s)
- Barbara Conradt
- Center for Integrated Protein Science Munich (CIPSM), Department Biology II, Ludwig-Maximilians-University Munich, Großhaderner Straße 2, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|