1
|
Li Y, Qi J, Guo L, Jiang X, He G. Organellar quality control crosstalk in aging-related disease: Innovation to pave the way. Aging Cell 2025; 24:e14447. [PMID: 39668579 PMCID: PMC11709098 DOI: 10.1111/acel.14447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/04/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024] Open
Abstract
Organellar homeostasis and crosstalks within a cell have emerged as essential regulatory and determining factors for the survival and functions of cells. In response to various stimuli, cells can activate the organellar quality control systems (QCS) to maintain homeostasis. Numerous studies have demonstrated that dysfunction of QCS can lead to various aging-related diseases such as neurodegenerative, pulmonary, cardiometabolic diseases and cancers. However, the interplay between QCS and their potential role in these diseases are poorly understood. In this review, we present an overview of the current findings of QCS and their crosstalk, encompassing mitochondria, endoplasmic reticulum, Golgi apparatus, ribosomes, peroxisomes, lipid droplets, and lysosomes as well as the aberrant interplays among these organelles that contributes to the onset and progression of aging-related disorders. Furthermore, potential therapeutic approaches based on these quality control interactions are discussed. Our perspectives can enhance insights into the regulatory networks underlying QCS and the pathology of aging and aging-related diseases, which may pave the way for the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Yu Li
- Department of Dermatology & VenerologyWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Jinxin Qi
- Department of Dermatology & VenerologyWest China Hospital, Sichuan UniversityChengduChina
| | - Linhong Guo
- Department of Dermatology & VenerologyWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xian Jiang
- Department of Dermatology & VenerologyWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Gu He
- Department of Dermatology & VenerologyWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
2
|
Li G, Wang Z, Gao B, Dai K, Niu X, Li X, Wang Y, Li L, Wu X, Li H, Yu Z, Wang Z, Chen G. ANKZF1 knockdown inhibits glioblastoma progression by promoting intramitochondrial protein aggregation through mitoRQC. Cancer Lett 2024; 591:216895. [PMID: 38670305 DOI: 10.1016/j.canlet.2024.216895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Protein homeostasis is fundamental to the development of tumors. Ribosome-associated quality-control (RQC) is able to add alanine and threonine to the stagnant polypeptide chain C-terminal (CAT-tail) when protein translation is hindered, while Ankyrin repeat and zinc-finger domain-containing-protein 1 (ANKZF1) can counteract the formation of the CAT-tail, preventing the aggregation of polypeptide chains. In particular, ANKZF1 plays an important role in maintaining mitochondrial protein homeostasis by mitochondrial RQC (mitoRQC) after translation stagnation of precursor proteins targeting mitochondria. However, the role of ANKZF1 in glioblastoma is unclear. Therefore, the current study was aimed to investigate the effects of ANKZF1 in glioblastoma cells and a nude mouse glioblastoma xenograft model. Here, we reported that knockdown of ANKZF1 in glioblastoma cells resulted in the accumulation of CAT-tail in mitochondria, leading to the activated mitochondrial unfolded protein response (UPRmt) and inhibits glioblastoma malignant progression. Excessive CAT-tail sequestered mitochondrial chaperones HSP60, mtHSP70 and proteases LONP1 as well as mitochondrial respiratory chain subunits ND1, Cytb, mtCO2 and ATP6, leading to mitochondrial oxidative phosphorylation dysfunction, membrane potential impairment, and mitochondrial apoptotic pathway activation. Our study highlights ANKZF1 as a valuable target for glioblastoma intervention and provides an innovative insight for the treatment of glioblastoma through the regulating of mitochondrial protein homeostasis.
Collapse
Affiliation(s)
- Guangzhao Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China; Department of Neurosurgery, Hefei First People's Hospital, Hefei, 230031, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Bixi Gao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Kun Dai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Xiaowang Niu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Yunjiang Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Longyuan Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Xin Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China.
| |
Collapse
|