1
|
Jiang J, Chen Y, Zheng Y, Ding Y, Wang H, Zhou Q, Teng L, Zhang X. Sialic acid metabolism-based classification reveals novel metabolic subtypes with distinct characteristics of tumor microenvironment and clinical outcomes in gastric cancer. Cancer Cell Int 2025; 25:61. [PMID: 39987095 PMCID: PMC11847363 DOI: 10.1186/s12935-025-03695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/13/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND High heterogeneity in gastric cancer (GC) remains a challenge for standard treatments and prognosis prediction. Dysregulation of sialic acid metabolism (SiaM) is recognized as a key metabolic hallmark of tumor immune evasion and metastasis. Herein, we aimed to develop a SiaM-based metabolic classification in GC. METHODS SiaM-related genes were obtained from the MsigDB database. Bulk and single-cell transcriptional data of 956 GC patients were acquired from the GEO, TCGA, and MEDLINE databases. Proteomic profiles of 20 GC samples were derived from our institution. The consensus clustering algorithm was applied to identify SiaM-based clusters. The SiaM-based model was established via LASSO regression and evaluated via Kaplan‒Meier curve and ROC curve analyses. In vitro and in vivo experiments were conducted to explore the function of ST3GAL1 in GC. RESULTS Three SiaM clusters presented distinct patterns of clinicopathological features, transcriptomic alterations, and tumor immune microenvironment landscapes in GC. Compared with clusters A and B, cluster C presented elevated SiaM activity, higher metastatic potential, more abundant immunosuppressive features, and a worse prognosis. Based on the differentially expressed genes between these clusters, a risk model for six genes (ARHGAP6, ST3GAL1, ADAM28, C7, PLCL1, and TTC28) was then constructed. The model exhibited robust performance in predicting peritoneal metastasis and prognosis in four independent cohorts. As a hub gene in the model, ST3GAL1 promoted GC cell migration and invasion in vitro and in vivo. CONCLUSIONS Our study proposed a novel SiaM-based classification that identified three metabolic subtypes with distinct characteristics of tumor microenvironment and clinical outcomes in GC.
Collapse
Affiliation(s)
- Junjie Jiang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Gastroenterology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Hangzhou Institute of Digestive Disease, Hangzhou, Zhejiang, China
| | - Yiran Chen
- Department of Surgical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yangyang Zheng
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yongfeng Ding
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haiyong Wang
- Department of Surgical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Quan Zhou
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Surgical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lisong Teng
- Department of Surgical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, 261 Huansha Road, Hangzhou, 310006, Zhejiang, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China.
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, Zhejiang, China.
- Hangzhou Institute of Digestive Disease, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Zhang G, Xiang M, Gu L, Zhou J, Zhang B, Tian W, Deng D. The essential role of TTC28 in maintaining chromosomal stability via HSPA8 chaperone-mediated autophagy. Proc Natl Acad Sci U S A 2024; 121:e2409447121. [PMID: 39630868 DOI: 10.1073/pnas.2409447121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/18/2024] [Indexed: 12/07/2024] Open
Abstract
There are three distinct forms of autophagy, namely, macroautophagy, microautophagy, and HSPA8 chaperone-mediated autophagy (CMA). While macroautophagy is widely recognized as a regulator of chromosomal instability (CIN) through various pathways, the contributions of CMA and microautophagy to CIN remain uncertain. TTC28, a conserved gene in vertebrates, is frequently mutated and down-regulated in numerous human cancers. This study presents findings demonstrating the interaction between human tetratricopeptide repeat domain 28 (TTC28) and heat shock protein member 8 (HSPA8) and lysosomal-associated membrane protein 2A proteins. The tetratricopeptide repeat domains of TTC28 bind to the C-terminal motif (PTIEEVD) in HSPA8, resulting in the subsequent degradation of TTC28 via CMA/microautophagy. Notably, the baseline frequency of micronuclei (FMN) in human cancer cells with TTC28 knockout cells was three times greater than that in cells with wild-type TTC28 (7.7% vs. 2.3%, P = 4.86E-09). Furthermore, the overexpression of Ttc28 mitigated the impact of TTC28 knockout on FMN (11.9% vs. 4.8%, P = 2.83E-11). Our findings also demonstrate that CMA has a protective effect on genome stability and that TTC28 plays an essential role in the effect of CMA. These results were further supported by the quantification of γH2AX and comet analyses and the analysis of The Cancer Genome Atlas data via bioinformatics. Mechanistically, TTC28 regulates mitosis and cytokinesis, which are involved in the maintenance of genome integrity by CMA. In conclusion, our study demonstrated that TTC28 is not only an HSPA8-mediated CMA/microautophagy substrate but also essential for maintaining chromosomal stability via CMA. Comprehensive TTC28 downregulation may lead to CIN in cancer cells.
Collapse
Affiliation(s)
- Ge Zhang
- Division of Cancer Etiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Meiyi Xiang
- Division of Cancer Etiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Liankun Gu
- Division of Cancer Etiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jing Zhou
- Division of Cancer Etiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Baozhen Zhang
- Division of Cancer Etiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Wei Tian
- Division of Cancer Etiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Dajun Deng
- Division of Cancer Etiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| |
Collapse
|
3
|
Matakatsu H, Fehon RG. Dachsous and Fat coordinately repress the Dachs-Dlish-Approximated complex to control growth. J Cell Biol 2024; 223:e202406119. [PMID: 39373700 PMCID: PMC11461286 DOI: 10.1083/jcb.202406119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024] Open
Abstract
Two protocadherins, Dachsous and Fat, regulate organ growth in Drosophila via the Hippo pathway. Dachsous and Fat bind heterotypically to regulate the abundance and subcellular localization of a "core complex" consisting of Dachs, Dlish, and Approximated. This complex localizes to the junctional cortex where it represses Warts. Dachsous is believed to promote growth by recruiting and stabilizing this complex, while Fat represses growth by promoting its degradation. Here, we examine the functional relationships between the intracellular domains of Dachsous and Fat and the core complex. While Dachsous promotes the accumulation of core complex proteins in puncta, it is not required for their assembly. Indeed, the core complex accumulates maximally in the absence of both Dachsous and Fat. Furthermore, Dachsous represses growth in the absence of Fat by removing the core complex from the junctional cortex. Fat similarly recruits core complex components but promotes their degradation. Our findings reveal that Dachsous and Fat coordinately constrain tissue growth by repressing the core complex.
Collapse
Affiliation(s)
- Hitoshi Matakatsu
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Richard G. Fehon
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Tripathi BK, Irvine KD. Contributions of the Dachsous intracellular domain to Dachsous-Fat signaling. Development 2024; 151:dev202919. [PMID: 39503213 PMCID: PMC11634027 DOI: 10.1242/dev.202919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024]
Abstract
The protocadherins Fat and Dachsous regulate organ growth, shape, patterning, and planar cell polarity. Although Dachsous and Fat have been described as ligand and receptor, respectively, in a signal transduction pathway, there is also evidence for bidirectional signaling. Here, we assess signaling downstream of Dachsous through analysis of its intracellular domain. Genomic deletions of conserved sequences within dachsous identified regions of the intracellular domain that contribute to Dachsous activity. Deletion of the A motif increased Dachsous protein levels and decreased wing size. Deletion of the D motif decreased Dachsous levels at cell membranes, increased wing size, and disrupted wing, leg and hindgut patterning and planar cell polarity. Co-immunoprecipitation experiments established that the D motif is necessary and sufficient for association of Dachsous with key partners, including Lowfat, Dachs, Spiny-legs, Fat and MyoID. Subdivision of the D motif identified distinct regions that preferentially contribute to different Dachsous activities. Our results identify motifs that are essential for Dachsous function and are consistent with the hypothesis that the key function of Dachsous is regulation of Fat.
Collapse
Affiliation(s)
- Bipin Kumar Tripathi
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D. Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
5
|
Matakatsu H, Fehon RG. Dachsous and Fat coordinately repress the Dachs-Dlish-Approximated complex to control growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599638. [PMID: 38948705 PMCID: PMC11212998 DOI: 10.1101/2024.06.18.599638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Two protocadherins, Dachsous (Ds) and Fat (Ft), regulate organ growth in Drosophila via the Hippo pathway. Ds and Ft bind heterotypically to regulate the abundance and subcellular localization of a 'core complex' consisting of Dachs, Dlish and Approximated. This complex localizes to the junctional cortex where it promotes growth by repressing the pathway kinase Warts. Ds is believed to promote growth by recruiting and stabilizing the core complex at the junctional cortex, while Ft represses growth by promoting degradation of core complex components. Here, we examine the functions of intracellular domains of Ds and Ft and their relationship to the core complex. While Ds promotes accumulation of the core complex proteins in cortical puncta, it is not required for core complex assembly. Indeed, the core complex assembles maximally in the absence of both Ds and Ft. Furthermore, while Ds promotes growth in the presence of Ft, it represses growth in the absence of Ft by removing the core complex from the junctional cortex. Ft similarly recruits core complex components, however it normally promotes their degradation. Our findings reveal that Ds and Ft constrain tissue growth by repressing the default 'on' state of the core complex.
Collapse
|
6
|
Zou K, Wang T, Guan M, Liu Y, Li J, Liu Y, Du J, Wu D. Identification and Evaluation of qRT-PCR Reference Genes in Melanaphis sacchari. INSECTS 2024; 15:522. [PMID: 39057255 PMCID: PMC11277337 DOI: 10.3390/insects15070522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024]
Abstract
Appropriate reference genes must be selected for accurate qRT-PCR data to conduct a thorough gene expression analysis in the sorghum aphid (Melanaphis sacchari, Hemiptera, Aphididae). This approach will establish a foundation for gene expression analysis and determines the efficacy of RNA interference in the sorghum aphid. Nine potential reference genes, including Actin, 18S, GAPDH, RPL7, EF-1α, EF-1β, 28S, HSP70, and TATA, were assessed under various experimental conditions to gauge their suitability based on qRT-PCR Ct values. The stability of these candidate reference genes in diverse experimental setups was analyzed employing several techniques, including the ΔCt comparative method, geNorm, Normfinder, BestKeeper, and RefFinder. The findings revealed that the quantity of ideal reference genes ascertained by the geNorm method for diverse experimental conditions remained consistent. For the developmental stages of the sorghum aphid, RPL7 and 18S proved to be the most dependable reference genes, whereas GAPDH and EF-1β were recommended as the most stable reference genes for different tissues. In experiments involving wing dimorphism, EF-1α and GAPDH were identified as the optimal reference gene pair. Under varying temperatures, EF-1α and EF-1β were found to be the most dependable gene pair. For studies focusing on insecticide susceptibility, 18S and TATA emerged as the most stable candidate reference genes. Across all experimental conditions, EF-1α and EF-1β was the optimal combination of reference genes in the sorghum aphid. This research has pinpointed stable reference genes that can be utilized across various treatments, thereby enhancing gene expression studies and functional genomics research on the sorghum aphid.
Collapse
Affiliation(s)
- Kunliang Zou
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (K.Z.); (T.W.); (J.L.); (Y.L.); (D.W.)
| | - Tonghan Wang
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (K.Z.); (T.W.); (J.L.); (Y.L.); (D.W.)
| | - Minghui Guan
- Anhui Province International Joint Research Center of Forage Bio-Breeding, Chuzhou 233100, China;
- College of Resources and Environment, Anhui Science and Technology University, Chuzhou 233100, China;
| | - Yang Liu
- College of Resources and Environment, Anhui Science and Technology University, Chuzhou 233100, China;
| | - Jieqin Li
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (K.Z.); (T.W.); (J.L.); (Y.L.); (D.W.)
- Anhui Province International Joint Research Center of Forage Bio-Breeding, Chuzhou 233100, China;
| | - Yanlong Liu
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (K.Z.); (T.W.); (J.L.); (Y.L.); (D.W.)
- Anhui Province International Joint Research Center of Forage Bio-Breeding, Chuzhou 233100, China;
| | - Junli Du
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (K.Z.); (T.W.); (J.L.); (Y.L.); (D.W.)
- Anhui Province International Joint Research Center of Forage Bio-Breeding, Chuzhou 233100, China;
| | - Degong Wu
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (K.Z.); (T.W.); (J.L.); (Y.L.); (D.W.)
| |
Collapse
|
7
|
Singh A, Thale S, Leibner T, Lamparter L, Ricker A, Nüsse H, Klingauf J, Galic M, Ohlberger M, Matis M. Dynamic interplay of microtubule and actomyosin forces drive tissue extension. Nat Commun 2024; 15:3198. [PMID: 38609383 PMCID: PMC11014958 DOI: 10.1038/s41467-024-47596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
In order to shape a tissue, individual cell-based mechanical forces have to be integrated into a global force pattern. Over the last decades, the importance of actomyosin contractile arrays, which are the key constituents of various morphogenetic processes, has been established for many tissues. Recent studies have demonstrated that the microtubule cytoskeleton mediates folding and elongation of the epithelial sheet during Drosophila morphogenesis, placing microtubule mechanics on par with actin-based processes. While these studies establish the importance of both cytoskeletal systems during cell and tissue rearrangements, a mechanistic understanding of their functional hierarchy is currently missing. Here, we dissect the individual roles of these two key generators of mechanical forces during epithelium elongation in the developing Drosophila wing. We show that wing extension, which entails columnar-to-cuboidal cell shape remodeling in a cell-autonomous manner, is driven by anisotropic cell expansion caused by the remodeling of the microtubule cytoskeleton from apico-basal to planarly polarized. Importantly, cell and tissue elongation is not associated with Myosin activity. Instead, Myosin II exhibits a homeostatic role, as actomyosin contraction balances polarized microtubule-based forces to determine the final cell shape. Using a reductionist model, we confirm that pairing microtubule and actomyosin-based forces is sufficient to recapitulate cell elongation and the final cell shape. These results support a hierarchical mechanism whereby microtubule-based forces in some epithelial systems prime actomyosin-generated forces.
Collapse
Affiliation(s)
- Amrita Singh
- Institute of Cell Biology, Medical Faculty, University of Münster, Münster, Germany
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
| | - Sameedha Thale
- Institute of Cell Biology, Medical Faculty, University of Münster, Münster, Germany
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
| | - Tobias Leibner
- Applied Mathematics, Institute for Analysis and Numerics, Faculty of Mathematics and Computer science, University of Münster, Münster, Germany
| | - Lucas Lamparter
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Andrea Ricker
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Harald Nüsse
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Jürgen Klingauf
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Milos Galic
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Mario Ohlberger
- Applied Mathematics, Institute for Analysis and Numerics, Faculty of Mathematics and Computer science, University of Münster, Münster, Germany
| | - Maja Matis
- Institute of Cell Biology, Medical Faculty, University of Münster, Münster, Germany.
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany.
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany.
| |
Collapse
|
8
|
Tanaka A, Ogawa M, Zhou Y, Namba K, Hendrickson RC, Miele MM, Li Z, Klimstra DS, Buckley PG, Gulcher J, Wang JY, Roehrl MHA. Proteogenomic characterization of primary colorectal cancer and metastatic progression identifies proteome-based subtypes and signatures. Cell Rep 2024; 43:113810. [PMID: 38377004 PMCID: PMC11288375 DOI: 10.1016/j.celrep.2024.113810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 10/26/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Metastatic progression of colorectal adenocarcinoma (CRC) remains poorly understood and poses significant challenges for treatment. To overcome these challenges, we performed multiomics analyses of primary CRC and liver metastases. Genomic alterations, such as structural variants or copy number alterations, were enriched in oncogenes and tumor suppressor genes and increased in metastases. Unsupervised mass spectrometry-based proteomics of 135 primary and 123 metastatic CRCs uncovered distinct proteomic subtypes, three each for primary and metastatic CRCs, respectively. Integrated analyses revealed that hypoxia, stemness, and immune signatures characterize these 6 subtypes. Hypoxic CRC harbors high epithelial-to-mesenchymal transition features and metabolic adaptation. CRC with a stemness signature shows high oncogenic pathway activation and alternative telomere lengthening (ALT) phenotype, especially in metastatic lesions. Tumor microenvironment analysis shows immune evasion via modulation of major histocompatibility complex (MHC) class I/II and antigen processing pathways. This study characterizes both primary and metastatic CRCs and provides a large proteogenomics dataset of metastatic progression.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Makiko Ogawa
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yihua Zhou
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; ICU Department, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kei Namba
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ronald C Hendrickson
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew M Miele
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhuoning Li
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David S Klimstra
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Paige.AI, New York, NY, USA
| | | | | | | | - Michael H A Roehrl
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
9
|
Bressan C, Snapyan M, Snapyan M, Klaus J, di Matteo F, Robertson SP, Treutlein B, Parent M, Cappello S, Saghatelyan A. Metformin rescues migratory deficits of cells derived from patients with periventricular heterotopia. EMBO Mol Med 2023; 15:e16908. [PMID: 37609821 PMCID: PMC10565636 DOI: 10.15252/emmm.202216908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023] Open
Abstract
Periventricular neuronal heterotopia (PH) is one of the most common forms of cortical malformation in the human cortex. We show that human neuronal progenitor cells (hNPCs) derived from PH patients with a DCHS1 or FAT4 mutation as well as isogenic lines had altered migratory dynamics when grafted in the mouse brain. The affected migration was linked to altered autophagy as observed in vivo with an electron microscopic analysis of grafted hNPCs, a Western blot analysis of cortical organoids, and time-lapse imaging of hNPCs in the presence of bafilomycin A1. We further show that deficits in autophagy resulted in the accumulation of paxillin, a focal adhesion protein involved in cell migration. Strikingly, a single-cell RNA-seq analysis of hNPCs revealed similar expression levels of autophagy-related genes. Bolstering AMPK-dependent autophagy by metformin, an FDA-approved drug, promoted migration of PH patients-derived hNPCs. Our data indicate that transcription-independent homeostatic modifications in autophagy contributed to the defective migratory behavior of hNPCs in vivo and suggest that modulating autophagy in hNPCs might rescue neuronal migration deficits in some forms of PH.
Collapse
Affiliation(s)
- Cedric Bressan
- CERVO Brain Research CenterQuebec CityQCCanada
- Université LavalQuebec CityQCCanada
| | - Marta Snapyan
- CERVO Brain Research CenterQuebec CityQCCanada
- Université LavalQuebec CityQCCanada
| | - Marina Snapyan
- CERVO Brain Research CenterQuebec CityQCCanada
- Université LavalQuebec CityQCCanada
- University of OttawaOttawaONCanada
| | | | - Francesco di Matteo
- Max Planck Institute of PsychiatryMunichGermany
- Biomedical Center (BMC)Ludwig Maximilian University of MunichMunichGermany
| | | | - Barbara Treutlein
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Martin Parent
- CERVO Brain Research CenterQuebec CityQCCanada
- Université LavalQuebec CityQCCanada
| | - Silvia Cappello
- Max Planck Institute of PsychiatryMunichGermany
- Biomedical Center (BMC)Ludwig Maximilian University of MunichMunichGermany
| | - Armen Saghatelyan
- CERVO Brain Research CenterQuebec CityQCCanada
- Université LavalQuebec CityQCCanada
- University of OttawaOttawaONCanada
| |
Collapse
|
10
|
Kasiah J, McNeill H. Fat and Dachsous cadherins in mammalian development. Curr Top Dev Biol 2023; 154:223-244. [PMID: 37100519 DOI: 10.1016/bs.ctdb.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Cell growth and patterning are critical for tissue development. Here we discuss the evolutionarily conserved cadherins, Fat and Dachsous, and the roles they play during mammalian tissue development and disease. In Drosophila, Fat and Dachsous regulate tissue growth via the Hippo pathway and planar cell polarity (PCP). The Drosophila wing has been an ideal tissue to observe how mutations in these cadherins affect tissue development. In mammals, there are multiple Fat and Dachsous cadherins, which are expressed in many tissues, but mutations in these cadherins that affect growth and tissue organization are context dependent. Here we examine how mutations in the Fat and Dachsous mammalian genes affect development in mammals and contribute to human disease.
Collapse
Affiliation(s)
- Jennysue Kasiah
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.
| |
Collapse
|
11
|
Ruvinskiy D, Igoshin A, Yurchenko A, Ilina AV, Larkin DM. Resequencing the Yaroslavl cattle genomes reveals signatures of selection and a rare haplotype on BTA28 likely to be related to breed phenotypes. Anim Genet 2022; 53:680-684. [PMID: 35711120 PMCID: PMC9541747 DOI: 10.1111/age.13230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 03/12/2022] [Accepted: 06/04/2022] [Indexed: 11/29/2022]
Abstract
The genomes of local livestock could shed light on their genetic history, mechanisms of adaptations to environments and unique genetics. Herein we look into the genetics and adaptations of the Russian native dairy Yaroslavl cattle breed using 22 resequenced individuals and comparing them with two related breeds (Russian Kholmogory and Holstein), and to the taurine set of the 1000 Bull Genomes Project (Run 9). HapFLK analysis with Kholmogory and Holstein breeds (using Yakut cattle as outgroup) resulted in 22 regions under selection (q‐value < 0.01) on 11 chromosomes assigned to Yaroslavl cattle, including a strong signature of selection in the region of the KIT gene on BTA6. The FST (fixation index) with the 1000 Bull Genomes Dataset showed 48 non‐overlapping top (0.1%) FST regions of which three overlapped HapFLK regions. We identified 1982 highly differentiated (FST > 0.40) missense mutations in the Yaroslavl genomes. These genes were enriched in the epidermal growth factor and calcium‐binding functional categories. The top FST intervals contained eight genes with allele frequencies quite different between the Yaroslavl and Kholmogory breeds and the rest of the 1000 Bull Genomes Dataset, including KAT6B, which had a nearly Yaroslavl breed‐specific deleterious missense mutation with the highest FST in our dataset (0.99). This gene is a part of a long haplotype containing other genes from FST and hapFLK analyses and with a negative association with weight and carcass traits according to the genotyping of 30 phenotyped Yaroslavl cattle individuals. Our work provides the industry with candidate genetic variants to be focused on in breed improvement efforts.
Collapse
Affiliation(s)
- Daniil Ruvinskiy
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia.,Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander Igoshin
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
| | - Andrey Yurchenko
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
| | - Anna V Ilina
- Federal Williams Research Center of Forage Production & Agroecology, Scientific Research Institute of Livestock Breeding and Forage Production, Yaroslavl Region, Russia
| | - Denis M Larkin
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia.,Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Royal Veterinary College, University of London, London, UK
| |
Collapse
|
12
|
Multiple asters organize the yolk microtubule network during dclk2-GFP zebrafish epiboly. Sci Rep 2022; 12:4072. [PMID: 35260695 PMCID: PMC8904445 DOI: 10.1038/s41598-022-07747-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/21/2022] [Indexed: 11/25/2022] Open
Abstract
It is known that the organization of microtubule (MT) networks in cells is orchestrated by subcellular structures named MT organizing centers (MTOCs). In this work, we use Light Sheet Fluorescence and Confocal Microscopy to investigate how the MT network surrounding the spherical yolk is arranged in the dclk2-GFP zebrafish transgenic line. We found that during epiboly the MT network is organized by multiple aster-like MTOCS. These structures form rings around the yolk sphere. Importantly, in wt embryos, aster-like MTOCs are only found upon pharmacological or genetic induction. Using our microscopy approach, we underscore the variability in the number of such asters in the transgenic line and report on the variety of global configurations of the yolk MT network. The asters’ morphology, dynamics, and their distribution in the yolk sphere are also analyzed. We propose that these features are tightly linked to epiboly timing and geometry. Key molecules are identified which support this asters role as MTOCs, where MT nucleation and growth take place. We conclude that the yolk MT network of dclk2-GFP transgenic embryos can be used as a model to organize microtubules in a spherical geometry by means of multiple MTOCs.
Collapse
|
13
|
Moore KS, Moore R, Fulmer DB, Guo L, Gensemer C, Stairley R, Glover J, Beck TC, Morningstar JE, Biggs R, Muhkerjee R, Awgulewitsch A, Norris RA. DCHS1, Lix1L, and the Septin Cytoskeleton: Molecular and Developmental Etiology of Mitral Valve Prolapse. J Cardiovasc Dev Dis 2022; 9:62. [PMID: 35200715 PMCID: PMC8874669 DOI: 10.3390/jcdd9020062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Mitral valve prolapse (MVP) is a common cardiac valve disease that often progresses to serious secondary complications requiring surgery. MVP manifests as extracellular matrix disorganization and biomechanically incompetent tissues in the adult setting. However, MVP has recently been shown to have a developmental basis, as multiple causal genes expressed during embryonic development have been identified. Disease phenotypes have been observed in mouse models with human MVP mutations as early as birth. This study focuses on the developmental function of DCHS1, one of the first genes to be shown as causal in multiple families with non-syndromic MVP. By using various biochemical techniques as well as mouse and cell culture models, we demonstrate a unique link between DCHS1-based cell adhesions and the septin-actin cytoskeleton through interactions with cytoplasmic protein Lix1-Like (LIX1L). This DCHS1-LIX1L-SEPT9 axis interacts with and promotes filamentous actin organization to direct cell-ECM alignment and valve tissue shape.
Collapse
Affiliation(s)
- Kelsey S. Moore
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Reece Moore
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Diana B. Fulmer
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Lilong Guo
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Cortney Gensemer
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Rebecca Stairley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Janiece Glover
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Tyler C. Beck
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Jordan E. Morningstar
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Rachel Biggs
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Rupak Muhkerjee
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Alexander Awgulewitsch
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Russell A. Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| |
Collapse
|
14
|
Stark BC, Gao Y, Sepich DS, Belk L, Culver MA, Hu B, Mekel M, Ferris W, Shin J, Solnica-Krezel L, Lin F, Cooper JA. CARMIL3 is important for cell migration and morphogenesis during early development in zebrafish. Dev Biol 2022; 481:148-159. [PMID: 34599906 PMCID: PMC8781030 DOI: 10.1016/j.ydbio.2021.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023]
Abstract
Cell migration is important during early animal embryogenesis. Cell migration and cell shape are controlled by actin assembly and dynamics, which depend on capping proteins, including the barbed-end heterodimeric actin capping protein (CP). CP activity can be regulated by capping-protein-interacting (CPI) motif proteins, including CARMIL (capping protein Arp2/3 myosin-I linker) family proteins. Previous studies of CARMIL3, one of the three highly conserved CARMIL genes in vertebrates, have largely been limited to cells in culture. Towards understanding CARMIL function during embryogenesis in vivo, we analyzed zebrafish lines carrying mutations of carmil3. Maternal-zygotic mutants showed impaired endodermal migration during gastrulation, along with defects in dorsal forerunner cell (DFC) cluster formation, which affected the morphogenesis of Kupffer's vesicle (KV). Mutant KVs were smaller, contained fewer cells and displayed decreased numbers of cilia, leading to defects in left/right (L/R) patterning with variable penetrance and expressivity. The penetrance and expressivity of the KV phenotype in carmil3 mutants correlated well with the L/R heart positioning defect at the end of embryogenesis. This in vivo animal study of CARMIL3 reveals its new role during morphogenesis of the vertebrate embryo. This role involves migration of endodermal cells and DFCs, along with subsequent morphogenesis of the KV and L/R asymmetry.
Collapse
Affiliation(s)
- Benjamin C. Stark
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO
| | - Yuanyuan Gao
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Diane S. Sepich
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO
| | - Lakyn Belk
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Matthew A. Culver
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Bo Hu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Marlene Mekel
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO
| | - Wyndham Ferris
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO
| | - Jimann Shin
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO,Corresponding authors. Email addresses for correspondence after publication: Fang Lin, ; Lilianna Solnica-Krezel, ; John Cooper,
| | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA.,Corresponding authors. Email addresses for correspondence after publication: Fang Lin, ; Lilianna Solnica-Krezel, ; John Cooper,
| | - John A. Cooper
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO,Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO,Corresponding authors. Email addresses for correspondence after publication: Fang Lin, ; Lilianna Solnica-Krezel, ; John Cooper,
| |
Collapse
|
15
|
Bernardello M, Marsal M, Gualda EJ, Loza-Alvarez P. Light-sheet fluorescence microscopy for the in vivo study of microtubule dynamics in the zebrafish embryo. BIOMEDICAL OPTICS EXPRESS 2021; 12:6237-6254. [PMID: 34745732 PMCID: PMC8547989 DOI: 10.1364/boe.438402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
During its first hours of development, the zebrafish embryo presents a large microtubule array in the yolk region, essential for its development. Despite of its size and dynamic behavior, this network has been studied only in limited field of views or in fixed samples. We designed and implemented different strategies in Light Sheet Fluorescence microscopy for imaging the entire yolk microtubule (MT) network in vivo. These have allowed us to develop a novel image analysis from which we clearly observe a cyclical re-arrangement of the entire MT network in synchrony with blastoderm mitotic waves. These dynamics also affect a previously unreported microtubule array deep within the yolk, here described. These findings provide a new vision of the zebrafish yolk microtubules arrangement, and offers novel insights in the interaction between mitotic events and microtubules reorganization.
Collapse
Affiliation(s)
- Matteo Bernardello
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860, Spain
- equal contribution
| | - Maria Marsal
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860, Spain
- equal contribution
| | - Emilio J. Gualda
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860, Spain
- equal contribution
| | - Pablo Loza-Alvarez
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860, Spain
| |
Collapse
|
16
|
Strutt H, Strutt D. How do the Fat-Dachsous and core planar polarity pathways act together and independently to coordinate polarized cell behaviours? Open Biol 2021; 11:200356. [PMID: 33561385 PMCID: PMC8061702 DOI: 10.1098/rsob.200356] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Planar polarity describes the coordinated polarization of cells within the plane of a tissue. This is controlled by two main pathways in Drosophila: the Frizzled-dependent core planar polarity pathway and the Fat–Dachsous pathway. Components of both of these pathways become asymmetrically localized within cells in response to long-range upstream cues, and form intercellular complexes that link polarity between neighbouring cells. This review examines if and when the two pathways are coupled, focusing on the Drosophila wing, eye and abdomen. There is strong evidence that the pathways are molecularly coupled in tissues that express a specific isoform of the core protein Prickle, namely Spiny-legs. However, in other contexts, the linkages between the pathways are indirect. We discuss how the two pathways act together and independently to mediate a diverse range of effects on polarization of cell structures and behaviours.
Collapse
Affiliation(s)
- Helen Strutt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David Strutt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
17
|
Abstract
Planar cell polarization, PCP, describes a form of organization where every cell within a group acquires the same planar characteristics, whether it is orientation of cell division, direction of migration, or localization of a cellular structure. PCP is essential for correct organization of cells into tissues and building a proper body plan. Here we use Hydra, an organism with a single axis of symmetry and a very simple body plan to investigate the function of the cell adhesion molecules Fat-like and Dachsous. We show that Hydra Fat-like and Dachsous are planar polarized, providing a demonstration of planar polarization of proteins in a nonbilaterian organism. We also discover roles for Hydra Fat-like in cell adhesion, spindle orientation, and tissue organization. Fat, Fat-like, and Dachsous family cadherins are giant proteins that regulate planar cell polarity (PCP) and cell adhesion in bilaterians. Their evolutionary origin can be traced back to prebilaterian species, but their ancestral function(s) are unknown. We identified Fat-like and Dachsous cadherins in Hydra, a member of phylum Cnidaria a sister group of bilaterian. We found Hydra does not possess a true Fat homolog, but has homologs of Fat-like (HyFatl) and Dachsous (HyDs) that localize at the apical membrane of ectodermal epithelial cells and are planar polarized perpendicular to the oral–aboral axis of the animal. Using a knockdown approach we found that HyFatl is involved in local cell alignment and cell–cell adhesion, and that reduction of HyFatl leads to defects in tissue organization in the body column. Overexpression and knockdown experiments indicate that the intracellular domain (ICD) of HyFatl affects actin organization through proline-rich repeats. Thus, planar polarization of Fat-like and Dachsous cadherins has ancient, prebilaterian origins, and Fat-like cadherins have ancient roles in cell adhesion, spindle orientation, and tissue organization.
Collapse
|
18
|
Fat/Dachsous family cadherins in cell and tissue organisation. Curr Opin Cell Biol 2020; 62:96-103. [DOI: 10.1016/j.ceb.2019.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/24/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023]
|
19
|
Bai X, Melesse M, Sorensen Turpin CG, Sloan DE, Chen CY, Wang WC, Lee PY, Simmons JR, Nebenfuehr B, Mitchell D, Klebanow LR, Mattson N, Betzig E, Chen BC, Cheerambathur D, Bembenek JN. Aurora B functions at the apical surface after specialized cytokinesis during morphogenesis in C. elegans. Development 2020; 147:dev.181099. [PMID: 31806662 PMCID: PMC6983721 DOI: 10.1242/dev.181099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022]
Abstract
Although cytokinesis has been intensely studied, the way it is executed during development is not well understood, despite a long-standing appreciation that various aspects of cytokinesis vary across cell and tissue types. To address this, we investigated cytokinesis during the invariant Caenorhabditis elegans embryonic divisions and found several parameters that are altered at different stages in a reproducible manner. During early divisions, furrow ingression asymmetry and midbody inheritance is consistent, suggesting specific regulation of these events. During morphogenesis, we found several unexpected alterations to cytokinesis, including apical midbody migration in polarizing epithelial cells of the gut, pharynx and sensory neurons. Aurora B kinase, which is essential for several aspects of cytokinesis, remains apically localized in each of these tissues after internalization of midbody ring components. Aurora B inactivation disrupts cytokinesis and causes defects in apical structures, even if inactivated post-mitotically. Therefore, we demonstrate that cytokinesis is implemented in a specialized way during epithelial polarization and that Aurora B has a role in the formation of the apical surface.
Collapse
Affiliation(s)
- Xiaofei Bai
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Michael Melesse
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Dillon E. Sloan
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chin-Yi Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Cheng Wang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Po-Yi Lee
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - James R. Simmons
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Benjamin Nebenfuehr
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Diana Mitchell
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lindsey R. Klebanow
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Nicholas Mattson
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Eric Betzig
- Janelia Research Campus, HHMI, Ashburn, VA 20147, USA
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan,Janelia Research Campus, HHMI, Ashburn, VA 20147, USA
| | - Dhanya Cheerambathur
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Joshua N. Bembenek
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA,Author for correspondence ()
| |
Collapse
|