1
|
Arya SB, Collie SP, Xu Y, Fernandez M, Sexton JZ, Mosalaganti S, Coulombe PA, Parent CA. Neutrophils secrete exosome-associated DNA to resolve sterile acute inflammation. Nat Cell Biol 2025:10.1038/s41556-025-01671-4. [PMID: 40404894 DOI: 10.1038/s41556-025-01671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 04/09/2025] [Indexed: 05/24/2025]
Abstract
Acute inflammation, characterized by a rapid influx of neutrophils, is a protective response that can lead to chronic inflammatory diseases when left unresolved. We previously showed that secretion of LTB4-containing exosomes via nuclear envelope-derived multivesicular bodies is required for effective neutrophil infiltration during inflammation. Here we report that the co-secretion of these exosomes with nuclear DNA facilitates the resolution of the neutrophil infiltrate in a mouse skin model of sterile inflammation. Activated neutrophils exhibit rapid and repetitive DNA secretion as they migrate directionally using a mechanism distinct from suicidal neutrophil extracellular trap release and cell death. Packaging of DNA in the lumen of nuclear envelope-multivesicular bodies is mediated by lamin B receptor and chromatin decondensation. These findings advance our understanding of neutrophil functions during inflammation and the physiological relevance of DNA secretion.
Collapse
Affiliation(s)
- Subhash B Arya
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Samuel P Collie
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yang Xu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Martin Fernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Z Sexton
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Shyamal Mosalaganti
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Pierre A Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carole A Parent
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Narozna M, Latham MC, Gorbsky GJ. Origin of Chromosome 12 Trisomy Surge in Human Induced Pluripotent Stem Cells (iPSCs). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.02.626470. [PMID: 39677655 PMCID: PMC11642788 DOI: 10.1101/2024.12.02.626470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Cultured pluripotent stem cells are unique in being the only fully diploid immortal human cell lines. However, during continued culture, they acquire significant chromosome abnormalities. Chromosome 12 trisomy is the most common whole-chromosome abnormality found during culture of human induced pluripotent stem cells (iPSCs). The conventional paradigm is that trisomy 12 occurs very rarely but provides a proliferative advantage, enabling these cells to outcompete the diploid. Here, we challenge this prevailing model by demonstrating that trisomy 12 arises simultaneously in a very high percentage of diploid cells. Using a single cell line that reproducibly undergoes transition from diploid to trisomy 12, we found that proliferation differences alone do not account for the rapid dominance of trisomic cells. Through careful mapping by fluorescent in-situ hybridization, we identified critical transition passages where trisomic cells first appeared and swiftly gained dominance. Remarkably, single trisomic cells repeatedly emerged de novo from diploid parents. Delving deeper, we discovered an extremely high incidence of chromosome 12 anaphase bridging exclusively during transition passages, along with overrepresentation of chromosome 12 chromatids in micronuclei. These micronuclei fail to replicate during S phase. Subsequently, when these micronucleated cells enter mitosis they contain an unreplicated chromosome 12 chromatids. We also found that nearly 20% of the shorter p arms of chromosome 12 but not the longer q arms exhibited loss of subtelomeric repeats during transition passages. Chromosome 12p arms were exclusively responsible for the bridging observed in anaphase cells. Our findings unveil a novel mechanism of whole-chromosome instability in human stem cells, where chromosome 12p arm-specific segregation errors occur simultaneously in a high percentage of cells. The slight yet significant growth advantage of trisomy 12 cells allows them to persist and eventually dominate the population. Our findings detailing this novel interpretation of the origin of chromosome instability in cultured of human stem cells may have broad implications for understanding the genesis of aneuploidy across diverse biological systems.
Collapse
Affiliation(s)
- Maria Narozna
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Megan C. Latham
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Gary J. Gorbsky
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
3
|
Arya SB, Collie SP, Xu Y, Fernandez M, Sexton JZ, Mosalaganti S, Coulombe PA, Parent CA. Neutrophils secrete exosome-associated DNA to resolve sterile acute inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.21.590456. [PMID: 38712240 PMCID: PMC11071349 DOI: 10.1101/2024.04.21.590456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Acute inflammation, characterized by a rapid influx of neutrophils, is a protective response that can lead to chronic inflammatory diseases when left unresolved. Secretion of LTB 4 -containing exosomes is required for effective neutrophil infiltration during inflammation. In this study, we show that neutrophils release nuclear DNA in a non-lytic, rapid, and repetitive manner, via a mechanism distinct from suicidal NET release and cell death. The packaging of nuclear DNA occurs in the lumen of nuclear envelope (NE)-derived multivesicular bodies (MVBs) that harbor the LTB 4 synthesizing machinery and is mediated by the lamin B receptor (LBR) and chromatin decondensation. Disruption of secreted exosome-associated DNA (SEAD) in a model of sterile inflammation in mouse skin amplifies and prolongs the presence of neutrophils, impeding the onset of resolution. Together, these findings advance our understanding of neutrophil functions during inflammation and the physiological significance of NETs, with implications for novel treatments for inflammatory disorders.
Collapse
|
4
|
Reece AS, Bennett K, Hulse GK. Cannabis- and Substance-Related Carcinogenesis in Europe: A Lagged Causal Inferential Panel Regression Study. J Xenobiot 2023; 13:323-385. [PMID: 37489337 PMCID: PMC10366890 DOI: 10.3390/jox13030024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Recent European data facilitate an epidemiological investigation of the controversial cannabis-cancer relationship. Of particular concern were prior findings associating high-dose cannabis use with reproductive problems and potential genetic impacts. Cancer incidence data age-standardised to the world population was obtained from the European Cancer Information System 2000-2020 and many European national cancer registries. Drug use data were obtained from the European Monitoring Centre for Drugs and Drug Addiction. Alcohol and tobacco consumption was sourced from the WHO. Median household income was taken from the World bank. Cancer rates in high-cannabis-use countries were significantly higher than elsewhere (β-estimate = 0.4165, p = 3.54 × 10-115). Eighteen of forty-one cancers (42,675 individual rates) were significantly associated with cannabis exposure at bivariate analysis. Twenty-five cancers were linked in inverse-probability-weighted multivariate models. Temporal lagging in panel models intensified these effects. In multivariable models, cannabis was a more powerful correlate of cancer incidence than tobacco or alcohol. Reproductive toxicity was evidenced by the involvement of testis, ovary, prostate and breast cancers and because some of the myeloid and lymphoid leukaemias implicated occur in childhood, indicating inherited intergenerational genotoxicity. Cannabis is a more important carcinogen than tobacco and alcohol and fulfills epidemiological qualitative and quantitative criteria for causality for 25/41 cancers. Reproductive and transgenerational effects are prominent. These findings confirm the clinical and epidemiological salience of cannabis as a major multigenerational community carcinogen.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Kellie Bennett
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- Faculty of Health Sciences, Curtin University, 208 Kent St., Bentley, Perth, WA 6102, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
5
|
Vijayalakshmi J, Chaurasia RK, Srinivas KS, Vijayalakshmi K, Paul SF, Bhat N, Sapra B. Establishment of ex vivo calibration curve for X-ray induced "dicentric + ring" and micronuclei in human peripheral lymphocytes for biodosimetry during radiological emergencies, and validation with dose blinded samples. Heliyon 2023; 9:e17068. [PMID: 37484390 PMCID: PMC10361230 DOI: 10.1016/j.heliyon.2023.e17068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
In the modern developing society, application of radiation has increased extensively. With significant improvement in the radiation protection practices, exposure to human could be minimized substantially, but cannot be avoided completely. Assessment of exposure is essential for regulatory decision and medical management as applicable. Until now, cytogenetic changes have served as surrogate marker of radiation exposure and have been extensively employed for biological dose estimation of various planned and unplanned exposures. Dicentric Chromosomal Aberration (DCA) is radiation specific and is considered as gold standard, micronucleus is not very specific to radiation and is considered as an alternative method for biodosimetry. In this study dose response curves were generated for X-ray induced "dicentric + ring" and micronuclei, in lymphocytes of three healthy volunteers [2 females (age 22, 23 years) and 1 male (24 year)]. The blood samples were irradiated with X-ray using LINAC (energy 6 MV, dose rate 6 Gy/min), in the dose range of 0-5Gy. Irradiated blood samples were cultured and processed to harvest metaphases, as per standard procedures recommended by International Atomic Energy Agency. Pooled data obtained from all the three volunteers, were in agreement with Poisson distribution for "dicentric + ring", however over dispersion was observed for micronuclei. Data ("dicentric + ring" and micronuclei) were fitted by linear quadratic model of the expression Y[bond, double bond]C + αD + βD2 using Dose Estimate software, version 5.2. The data fit has resulted in linear coefficient α = 0.0006 (±0.0068) "dicentric + ring" cell-1 Gy-1 and quadratic coefficient β = 0.0619 (±0.0043) "dicentric + ring" cell-1 Gy-2 for "dicentric + ring" and linear coefficient α = 0.0459 ± (0.0038) micronuclei cell-1 Gy-1 and quadratic coefficient β = 0.0185 ± (0.0010) micronuclei cell-1 Gy-2 for micronuclei, respectively. Background frequencies for "dicentric + ring" and micronuclei were 0.0006 ± 0.0004 and 0.0077 ± 0.0012 cell-1, respectively. Established curves were validated, by reconstructing the doses of 8 dose blinded samples (4 by DCA and 4 by CBMN) using coefficients generated here. Estimated doses were within the variation of 0.9-16% for "dicentric + ring" and 21.7-31.2% for micronuclei respectively. These established curves have potential to be employed for biodosimetry of occupational, clinical and accidental exposures, for initial triage and medical management.
Collapse
Affiliation(s)
- J. Vijayalakshmi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - Rajesh Kumar Chaurasia
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - K. Satish Srinivas
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - K. Vijayalakshmi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - Solomon F.D. Paul
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - N.N. Bhat
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - B.K. Sapra
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
6
|
Karami Fath M, Karimfar N, Fazlollahpour Naghibi A, Shafa S, Ghasemi Shiran M, Ataei M, Dehghanzadeh H, Nabi Afjadi M, Ghadiri T, Payandeh Z, Tarhriz V. Revisiting characteristics of oncogenic extrachromosomal DNA as mobile enhancers on neuroblastoma and glioma cancers. Cancer Cell Int 2022; 22:200. [PMID: 35614494 PMCID: PMC9131661 DOI: 10.1186/s12935-022-02617-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/18/2022] [Indexed: 12/21/2022] Open
Abstract
Cancer can be induced by a variety of possible causes, including tumor suppressor gene failure and proto-oncogene hyperactivation. Tumor-associated extrachromosomal circular DNA has been proposed to endanger human health and speed up the progression of cancer. The amplification of ecDNA has raised the oncogene copy number in numerous malignancies according to whole-genome sequencing on distinct cancer types. The unusual structure and function of ecDNA, and its potential role in understanding current cancer genome maps, make it a hotspot to study tumor pathogenesis and evolution. The discovery of the basic mechanisms of ecDNA in the emergence and growth of malignancies could lead researchers to develop new cancer therapies. Despite recent progress, different aspects of ecDNA require more investigation. We focused on the features, and analyzed the bio-genesis, and origin of ecDNA in this review, as well as its functions in neuroblastoma and glioma cancers.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Nastaran Karimfar
- Faculty of Veterinary Medicine, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | | | - Shahriyar Shafa
- School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Melika Ghasemi Shiran
- Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehran Ataei
- Department of Biology, Faculty of Sciences, Shahid Chamran University, Ahvaz, Iran
| | | | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| | - Tahereh Ghadiri
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. .,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran. .,Neurosiences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden.
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Gene Amplification and the Extrachromosomal Circular DNA. Genes (Basel) 2021; 12:genes12101533. [PMID: 34680928 PMCID: PMC8535887 DOI: 10.3390/genes12101533] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Oncogene amplification is closely linked to the pathogenesis of a broad spectrum of human malignant tumors. The amplified genes localize either to the extrachromosomal circular DNA, which has been referred to as cytogenetically visible double minutes (DMs), or submicroscopic episome, or to the chromosomal homogeneously staining region (HSR). The extrachromosomal circle from a chromosome arm can initiate gene amplification, resulting in the formation of DMs or HSR, if it had a sequence element required for replication initiation (the replication initiation region/matrix attachment region; the IR/MAR), under a genetic background that permits gene amplification. In this article, the nature, intracellular behavior, generation, and contribution to cancer genome plasticity of such extrachromosomal circles are summarized and discussed by reviewing recent articles on these topics. Such studies are critical in the understanding and treating human cancer, and also for the production of recombinant proteins such as biopharmaceuticals by increasing the recombinant genes in the cells.
Collapse
|
8
|
Epidemiological overview of multidimensional chromosomal and genome toxicity of cannabis exposure in congenital anomalies and cancer development. Sci Rep 2021; 11:13892. [PMID: 34230557 PMCID: PMC8260794 DOI: 10.1038/s41598-021-93411-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Cannabis and cannabinoids are implicated in multiple genotoxic, epigenotoxic and chromosomal-toxic mechanisms and interact with several morphogenic pathways, likely underpinning previous reports of links between cannabis and congenital anomalies and heritable tumours. However the effects of cannabinoid genotoxicity have not been assessed on whole populations and formal consideration of effects as a broadly acting genotoxin remain unexplored. Our study addressed these knowledge gaps in USA datasets. Cancer data from CDC, drug exposure data from National Survey of Drug Use and Health 2003-2017 and congenital anomaly data from National Birth Defects Prevention Network were used. We show that cannabis, THC cannabigerol and cannabichromene exposure fulfill causal criteria towards first Principal Components of both: (A) Down syndrome, Trisomies 18 and 13, Turner syndrome, Deletion 22q11.2, and (B) thyroid, liver, breast and pancreatic cancers and acute myeloid leukaemia, have mostly medium to large effect sizes, are robust to adjustment for ethnicity, other drugs and income in inverse probability-weighted models, show prominent non-linear effects, have 55/56 e-Values > 1.25, and are exacerbated by cannabis liberalization (P = 9.67 × 10-43, 2.66 × 10-15). The results confirm experimental studies showing that cannabinoids are an important cause of community-wide genotoxicity impacting both birth defect and cancer epidemiology at the chromosomal hundred-megabase level.
Collapse
|
9
|
Reece AS, Hulse GK. Epidemiological overview of multidimensional chromosomal and genome toxicity of cannabis exposure in congenital anomalies and cancer development. Sci Rep 2021. [PMID: 34230557 DOI: 10.10389/s41598-021-93411-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Cannabis and cannabinoids are implicated in multiple genotoxic, epigenotoxic and chromosomal-toxic mechanisms and interact with several morphogenic pathways, likely underpinning previous reports of links between cannabis and congenital anomalies and heritable tumours. However the effects of cannabinoid genotoxicity have not been assessed on whole populations and formal consideration of effects as a broadly acting genotoxin remain unexplored. Our study addressed these knowledge gaps in USA datasets. Cancer data from CDC, drug exposure data from National Survey of Drug Use and Health 2003-2017 and congenital anomaly data from National Birth Defects Prevention Network were used. We show that cannabis, THC cannabigerol and cannabichromene exposure fulfill causal criteria towards first Principal Components of both: (A) Down syndrome, Trisomies 18 and 13, Turner syndrome, Deletion 22q11.2, and (B) thyroid, liver, breast and pancreatic cancers and acute myeloid leukaemia, have mostly medium to large effect sizes, are robust to adjustment for ethnicity, other drugs and income in inverse probability-weighted models, show prominent non-linear effects, have 55/56 e-Values > 1.25, and are exacerbated by cannabis liberalization (P = 9.67 × 10-43, 2.66 × 10-15). The results confirm experimental studies showing that cannabinoids are an important cause of community-wide genotoxicity impacting both birth defect and cancer epidemiology at the chromosomal hundred-megabase level.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, 6009, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia.
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia
| |
Collapse
|
10
|
Guo X, Dai X, Wu X, Zhou T, Ni J, Xue J, Wang X. Understanding the birth of rupture-prone and irreparable micronuclei. Chromosoma 2020; 129:181-200. [PMID: 32671520 DOI: 10.1007/s00412-020-00741-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
Micronuclei are extra-nuclear bodies mainly derived from ana-telophase lagging chromosomes/chromatins (LCs) that are not incorporated into primary nuclei at mitotic exit. Unlike primary nuclei, most micronuclei are enclosed by nuclear envelope (NE) that is highly susceptible to spontaneous and irreparable rupture. Ruptured micronuclei act as triggers of chromothripsis-like chaotic chromosomal rearrangements and cGAS-mediated innate immunity and inflammation, raising the view that micronuclei play active roles in human aging and tumorigenesis. Thus, understanding the ways in which micronuclear envelope (mNE) goes awry acquires increased importance. Here, we review the data to present a general framework for this question. We firstly describe NE reassembly after mitosis and NE repair during interphase. Simultaneously, we briefly discuss how mNE is organized and how mNE rupture controls the fate of micronuclei and micronucleated cells. As a focus of this review, we highlight current knowledge about why mNE is rupture-prone and irreparable. For this, we survey observations from a series of elegant studies to provide a systematic overview. We conclude that the birth of rupture-prone and irreparable micronuclei may be the cumulative effects of their intracellular geographic origins, biophysical properties, and specific mNE features. We propose that DNA damage and immunogenicity in micronuclei increase stepwise from altered mNE components, mNE rupture, and refractory to repair. Throughout our discussion, we note interesting issues in mNE fragility that have yet to be resolved.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Xueqin Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Wu
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Tao Zhou
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Juan Ni
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Jinglun Xue
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, 650500, Yunnan, China.
| |
Collapse
|