1
|
Meng Y, Zeng W, Zhu X, Bao L, Pan Y, Li H, Zhang J, Liu L, Gao Z, Du Z, Chu W. The Role of Twist2 in Myoblast Proliferation, Fusion, and Its Impact on Muscle Structure During the Growth of Chinese Perch ( Siniperca chuatsi). Animals (Basel) 2025; 15:1177. [PMID: 40282011 PMCID: PMC12024327 DOI: 10.3390/ani15081177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/12/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
Twist2 plays a pivotal regulatory role in the growth of skeletal muscle across various organisms. Nonetheless, the specific mechanism by which Twist2 governs skeletal muscle function in fish, particularly in the economically significant Chinese perch (Siniperca chuatsi), remains unclear. Within the muscle injury model in Chinese perch, we observed that Twist2 expression was upregulated during the repair phase of fast muscle tissue, exhibiting an expression pattern analogous to that of Pax7. Following the knockdown of Twist2 using Twist2-specific in vivo-siRNA in fast muscle tissues, the expression of myogenic regulatory factors (MRFs) and Myomaker was significantly reduced in the Twist2-siRNA-treated group compared with the control group, whereas no significant differences were observed for Pax3 and Pax7. Furthermore, the diameter of myofibers and the number of nuclei in single myofibers were reduced, and concurrently, the number of BrdU-positive cells (proliferating cells) was significantly reduced in the Twist2-siRNA-treated group. Taken together, this study demonstrates that Twist2 promotes myoblast proliferation and fusion, thereby regulating fast muscle growth in juvenile Chinese perch. These findings provide a clear direction for further exploration of molecular mechanisms underlying skeletal muscle growth in economic fish species.
Collapse
Affiliation(s)
- Yangyang Meng
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Y.M.); (W.Z.); (L.B.); (Y.P.); (H.L.); (J.Z.)
| | - Wei Zeng
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Y.M.); (W.Z.); (L.B.); (Y.P.); (H.L.); (J.Z.)
| | - Xin Zhu
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Y.M.); (W.Z.); (L.B.); (Y.P.); (H.L.); (J.Z.)
| | - Lingsheng Bao
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Y.M.); (W.Z.); (L.B.); (Y.P.); (H.L.); (J.Z.)
| | - Yaxiong Pan
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Y.M.); (W.Z.); (L.B.); (Y.P.); (H.L.); (J.Z.)
| | - Honghui Li
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Y.M.); (W.Z.); (L.B.); (Y.P.); (H.L.); (J.Z.)
| | - Jianshe Zhang
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Y.M.); (W.Z.); (L.B.); (Y.P.); (H.L.); (J.Z.)
| | - Lusha Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (L.L.); (Z.G.)
| | - Zexia Gao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (L.L.); (Z.G.)
| | - Zhenyu Du
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China;
| | - Wuying Chu
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Y.M.); (W.Z.); (L.B.); (Y.P.); (H.L.); (J.Z.)
| |
Collapse
|
2
|
Korb A, Tajbakhsh S, Comai GE. Functional specialisation and coordination of myonuclei. Biol Rev Camb Philos Soc 2024; 99:1164-1195. [PMID: 38477382 DOI: 10.1111/brv.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Myofibres serve as the functional unit for locomotion, with the sarcomere as fundamental subunit. Running the entire length of this structure are hundreds of myonuclei, located at the periphery of the myofibre, juxtaposed to the plasma membrane. Myonuclear specialisation and clustering at the centre and ends of the fibre are known to be essential for muscle contraction, yet the molecular basis of this regionalisation has remained unclear. While the 'myonuclear domain hypothesis' helped explain how myonuclei can independently govern large cytoplasmic territories, novel technologies have provided granularity on the diverse transcriptional programs running simultaneously within the syncytia and added a new perspective on how myonuclei communicate. Building upon this, we explore the critical cellular and molecular sources of transcriptional and functional heterogeneity within myofibres, discussing the impact of intrinsic and extrinsic factors on myonuclear programs. This knowledge provides new insights for understanding muscle development, repair, and disease, but also opens avenues for the development of novel and precise therapeutic approaches.
Collapse
Affiliation(s)
- Amaury Korb
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Glenda E Comai
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| |
Collapse
|
3
|
Ma L, Meng Y, An Y, Han P, Zhang C, Yue Y, Wen C, Shi X, Jin J, Yang G, Li X. Single-cell RNA-seq reveals novel interaction between muscle satellite cells and fibro-adipogenic progenitors mediated with FGF7 signalling. J Cachexia Sarcopenia Muscle 2024; 15:1388-1403. [PMID: 38751367 PMCID: PMC11294021 DOI: 10.1002/jcsm.13484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND Muscle satellite cells (MuSCs) exert essential roles in skeletal muscle adaptation to growth, injury and ageing, and their functions are extensively modulated by microenvironmental factors. However, the current knowledge about the interaction of MuSCs with niche cells is quite limited. METHODS A 10× single-cell RNA sequencing (scRNA-seq) was performed on porcine longissimus dorsi and soleus (SOL) muscles to generate a single-cell transcriptomic dataset of myogenic cells and other cell types. Sophisticated bioinformatic analyses, including unsupervised clustering analysis, marker gene, gene set variation analysis (GSVA), AUCell, pseudotime analysis and RNA velocity analysis, were performed to explore the heterogeneity of myogenic cells. CellChat analysis was used to demonstrate cell-cell communications across myogenic cell subpopulations and niche cells, especially fibro-adipogenic progenitors (FAPs). Integrated analysis with human and mice datasets was performed to verify the expression of FGF7 across diverse species. The role of FGF7 on MuSC proliferation was evaluated through administering recombinant FGF7 to porcine MuSCs, C2C12, cardiotoxin (CTX)-injured muscle and d-galactose (d-gal)-induced ageing model. RESULTS ScRNA-seq totally figured out five cell types including myo-lineage cells and FAPs, and myo-lineage cells were further classified into six subpopulations, termed as RCN3+, S100A4+, ID3+, cycling (MKI67+), MYF6+ and MYMK+ satellite cells, respectively. There was a higher proportion of cycling and MYF6+ cells in the SOL population. CellChat analysis uncovered a particular impact of FAPs on myogenic cells mediated by FGF7, which was relatively highly expressed in SOL samples. Administration of FGF7 (10 ng/mL) significantly increased the proportion of EdU+ porcine MuSCs and C2C12 by 4.03 ± 0.81% (P < 0.01) and 6.87 ± 2.17% (P < 0.05), respectively, and knockdown of FGFR2 dramatically abolished the pro-proliferating effects (P < 0.05). In CTX-injured muscle, FGF7 significantly increased the ratio of EdU+/Pax7+ cells by 15.68 ± 5.45% (P < 0.05) and elevated the number of eMyHC+ regenerating myofibres by 19.7 ± 4.25% (P < 0.01). Under d-gal stimuli, FGF7 significantly reduced γH2AX+ cells by 17.19 ± 3.05% (P < 0.01) in porcine MuSCs, induced EdU+ cells by 4.34 ± 1.54% (P < 0.05) in C2C12, and restored myofibre size loss and running exhaustion in vivo (all P < 0.05). CONCLUSIONS Our scRNA-seq reveals a novel interaction between muscle FAPs and satellite cells mediated by FGF7-FGFR2. Exogenous FGF7 augments the proliferation of satellite cells and thus benefits muscle regeneration and counteracts age-related myopathy.
Collapse
Affiliation(s)
- Lu Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| | - Yingying Meng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| | - Yalong An
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| | - Peiyuan Han
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| | - Chen Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| | - Yongqi Yue
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| | - Chenglong Wen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| | - Xin'e Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| | - Jianjun Jin
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| | - Xiao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| |
Collapse
|
4
|
Zhang X, Yang Z, Zhang D, Bai M. The role of Semaphorin 3A in oral diseases. Oral Dis 2024; 30:1887-1896. [PMID: 37771213 DOI: 10.1111/odi.14748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023]
Abstract
Semaphorin 3A (SEMA3A), also referred to as H-Sema III, is a molecule with significant biological importance in regulating physiological and pathological processes. However, its role in oral diseases, particularly its association with inflammatory immunity and alveolar bone remodeling defects, remains poorly understood. This comprehensive review article aims to elucidate the recent advances in understanding SEMA3A in the oral system, encompassing nerve formation, periodontitis, pulpitis, apical periodontitis, and oral squamous cell carcinoma. Notably, we explore its novel function in inflammatory immunomodulation and alveolar bone formation during oral infectious diseases. By doing so, this review enhances our comprehension of SEMA3A's role in oral biology and opens up possibilities for modulatory approaches and potential treatments in oral diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhenqi Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Demao Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Mingru Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Fard D, Barbiera A, Dobrowolny G, Tamagnone L, Scicchitano BM. Semaphorins: Missing Signals in Age-dependent Alteration of Neuromuscular Junctions and Skeletal Muscle Regeneration. Aging Dis 2024; 15:517-534. [PMID: 37728580 PMCID: PMC10917540 DOI: 10.14336/ad.2023.0801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/01/2023] [Indexed: 09/21/2023] Open
Abstract
Skeletal muscle is characterized by a remarkable capacity to rearrange after physiological changes and efficiently regenerate. However, during aging, extensive injury, or pathological conditions, the complete regenerative program is severely affected, with a progressive loss of muscle mass and function, a condition known as sarcopenia. The compromised tissue repair program is attributable to the gradual depletion of stem cells and to altered regulatory signals. Defective muscle regeneration can severely affect re-innervation by motor axons, and neuromuscular junctions (NMJs) development, ultimately leading to skeletal muscle atrophy. Defects in NMJ formation and maintenance occur physiologically during aging and are responsible for the pathogenesis of several neuromuscular disorders. However, it is still largely unknown how neuromuscular connections are restored on regenerating fibers. It has been suggested that attractive and repelling signals used for axon guidance could be implicated in this process; in particular, guidance molecules called semaphorins play a key role. Semaphorins are a wide family of extracellular regulatory signals with a multifaceted role in cell-cell communication. Originally discovered as axon guidance factors, they have been implicated in cancer progression, embryonal organogenesis, skeletal muscle innervation, and other physiological and developmental functions in different tissues. In particular, in skeletal muscle, specific semaphorin molecules are involved in the restoration and remodeling of the nerve-muscle connections, thus emphasizing their plausible role to ensure the success of muscle regeneration. This review article aims to discuss the impact of aging on skeletal muscle regeneration and NMJs remodeling and will highlight the most recent insights about the role of semaphorins in this context.
Collapse
Affiliation(s)
- Damon Fard
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica,Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
| | - Alessandra Barbiera
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica,Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
| | - Gabriella Dobrowolny
- DAHFMO-Unità di Istologia ed Embriologia Medica, Sapienza Università di Roma, 00161 Roma, Italy.
| | - Luca Tamagnone
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica,Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy.
| | - Bianca Maria Scicchitano
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica,Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy.
| |
Collapse
|
6
|
Jiang H, Liu B, Lin J, Xue T, Han Y, Lu C, Zhou S, Gu Y, Xu F, Shen Y, Xu L, Sun H. MuSCs and IPCs: roles in skeletal muscle homeostasis, aging and injury. Cell Mol Life Sci 2024; 81:67. [PMID: 38289345 PMCID: PMC10828015 DOI: 10.1007/s00018-023-05096-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/01/2023] [Accepted: 12/17/2023] [Indexed: 02/01/2024]
Abstract
Skeletal muscle is a highly specialized tissue composed of myofibres that performs crucial functions in movement and metabolism. In response to external stimuli and injuries, a range of stem/progenitor cells, with muscle stem cells or satellite cells (MuSCs) being the predominant cell type, are rapidly activated to repair and regenerate skeletal muscle within weeks. Under normal conditions, MuSCs remain in a quiescent state, but become proliferative and differentiate into new myofibres in response to injury. In addition to MuSCs, some interstitial progenitor cells (IPCs) such as fibro-adipogenic progenitors (FAPs), pericytes, interstitial stem cells expressing PW1 and negative for Pax7 (PICs), muscle side population cells (SPCs), CD133-positive cells and Twist2-positive cells have been identified as playing direct or indirect roles in regenerating muscle tissue. Here, we highlight the heterogeneity, molecular markers, and functional properties of these interstitial progenitor cells, and explore the role of muscle stem/progenitor cells in skeletal muscle homeostasis, aging, and muscle-related diseases. This review provides critical insights for future stem cell therapies aimed at treating muscle-related diseases.
Collapse
Affiliation(s)
- Haiyan Jiang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Junfei Lin
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Tong Xue
- Department of Paediatrics, Medical School of Nantong University, Nantong University, Nantong, 226001, People's Republic of China
| | - Yimin Han
- Department of Paediatrics, Medical School of Nantong University, Nantong University, Nantong, 226001, People's Republic of China
| | - Chunfeng Lu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, Jiangsu, People's Republic of China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yun Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Lingchi Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
Li C, Zhao Y, Li F, Wang Z, Qiu Z, Yang Y, Xiong W, Wang R, Chen H, Xu F, Zang T, Pei Z, Wang Y, Shi B, Shen L, Ge J. Semaphorin3A Exacerbates Cardiac Microvascular Rarefaction in Pressure Overload-Induced Heart Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206801. [PMID: 37310417 PMCID: PMC10375119 DOI: 10.1002/advs.202206801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/20/2023] [Indexed: 06/14/2023]
Abstract
Microvascular endothelial cells (MiVECs) impair angiogenic potential, leading to microvascular rarefaction, which is a characteristic feature of chronic pressure overload-induced cardiac dysfunction. Semaphorin3A (Sema3A) is a secreted protein upregulated in MiVECs following angiotensin II (Ang II) activation and pressure overload stimuli. However, its role and mechanism in microvascular rarefaction remain elusive. The function and mechanism of action of Sema3A in pressure overload-induced microvascular rarefaction, is explored, through an Ang II-induced animal model of pressure overload. RNA sequencing, immunoblotting analysis, enzyme-linked immunosorbent assay, quantitative reverse transcription polymerase chain reaction (qRT-PCR), and immunofluorescence staining results indicate that Sema3A is predominantly expressed and significantly upregulated in MiVECs under pressure overload. Immunoelectron microscopy and nano-flow cytometry analyses indicate small extracellular vesicles (sEVs), with surface-attached Sema3A, to be a novel tool for efficient release and delivery of Sema3A from the MiVECs to extracellular microenvironment. To investigate pressure overload-mediated cardiac microvascular rarefaction and cardiac fibrosis in vivo, endothelial-specific Sema3A knockdown mice are established. Mechanistically, serum response factor (transcription factor) promotes the production of Sema3A; Sema3A-positive sEVs compete with vascular endothelial growth factor A to bind to neuropilin-1. Therefore, MiVECs lose their ability to respond to angiogenesis. In conclusion, Sema3A is a key pathogenic mediator that impairs the angiogenic potential of MiVECs, which leads to cardiac microvascular rarefaction in pressure overload-induced heart disease.
Collapse
Affiliation(s)
- Chaofu Li
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular Diseases180 Fenglin Road, Xuhui DistrictShanghai20032P. R. China
| | - Yongchao Zhao
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular Diseases180 Fenglin Road, Xuhui DistrictShanghai20032P. R. China
| | - Fuhai Li
- Department of CardiologyAffiliated Hospital of Qingdao UniversityQingdao266000P. R. China
| | - Zimu Wang
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular Diseases180 Fenglin Road, Xuhui DistrictShanghai20032P. R. China
| | - Zhimei Qiu
- Department of CardiologyAffiliated Hospital of Zunyi Medical UniversityZunyi563000P. R. China
| | - Yukun Yang
- The neuroscience labUniversity Hospital EssenUniversity of Duisburg‐EssenD‐45122EssenGermany
| | - Weidong Xiong
- Department of CardiologyAffiliated Hospital of Zunyi Medical UniversityZunyi563000P. R. China
| | - Rui Wang
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular Diseases180 Fenglin Road, Xuhui DistrictShanghai20032P. R. China
| | - Han Chen
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular Diseases180 Fenglin Road, Xuhui DistrictShanghai20032P. R. China
| | - Fei Xu
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular Diseases180 Fenglin Road, Xuhui DistrictShanghai20032P. R. China
| | - Tongtong Zang
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular Diseases180 Fenglin Road, Xuhui DistrictShanghai20032P. R. China
| | - Zhiqiang Pei
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular Diseases180 Fenglin Road, Xuhui DistrictShanghai20032P. R. China
| | - Yan Wang
- Department of CardiologyAffiliated Hospital of Zunyi Medical UniversityZunyi563000P. R. China
| | - Bei Shi
- Department of CardiologyAffiliated Hospital of Zunyi Medical UniversityZunyi563000P. R. China
| | - Li Shen
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular Diseases180 Fenglin Road, Xuhui DistrictShanghai20032P. R. China
| | - Junbo Ge
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular Diseases180 Fenglin Road, Xuhui DistrictShanghai20032P. R. China
| |
Collapse
|
8
|
Schweizer RM, Ivy CM, Natarajan C, Scott GR, Storz JF, Cheviron ZA. Gene regulatory changes underlie developmental plasticity in respiration and aerobic performance in highland deer mice. Mol Ecol 2023; 32:3483-3496. [PMID: 37073620 PMCID: PMC10330314 DOI: 10.1111/mec.16953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/20/2023]
Abstract
Phenotypic plasticity can play an important role in the ability of animals to tolerate environmental stress, but the nature and magnitude of plastic responses are often specific to the developmental timing of exposure. Here, we examine changes in gene expression in the diaphragm of highland deer mice (Peromyscus maniculatus) in response to hypoxia exposure at different stages of development. In highland deer mice, developmental plasticity in diaphragm function may mediate changes in several respiratory traits that influence aerobic metabolism and performance under hypoxia. We generated RNAseq data from diaphragm tissue of adult deer mice exposed to (1) life-long hypoxia (before conception to adulthood), (2) post-natal hypoxia (birth to adulthood), (3) adult hypoxia (6-8 weeks only during adulthood) or (4) normoxia. We found five suites of co-regulated genes that are differentially expressed in response to hypoxia, but the patterns of differential expression depend on the developmental timing of exposure. We also identified four transcriptional modules that are associated with important respiratory traits. Many of the genes in these transcriptional modules bear signatures of altitude-related selection, providing an indirect line of evidence that observed changes in gene expression may be adaptive in hypoxic environments. Our results demonstrate the importance of developmental stage in determining the phenotypic response to environmental stressors.
Collapse
Affiliation(s)
- Rena M. Schweizer
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Catherine M. Ivy
- Department of Biology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | | | - Graham R. Scott
- Department of Biology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Jay F. Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Zachary A. Cheviron
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
9
|
Effects of Semaphorin3A on the growth of sensory and motor neurons. Exp Cell Res 2023; 424:113506. [PMID: 36764590 DOI: 10.1016/j.yexcr.2023.113506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
After peripheral nerve injury, motor and sensory axons can regenerate, but the inaccurate reinnervation of the target leads to poor functional recovery. Schwann cells (SCs) express sensory and motor phenotypes associated with selective regeneration. Semaphorin 3A (Sema3A) is an axonal chemorepellent that plays an essential role in axon growth. SCs can secret Sema3A, and Sema3A presents a different expression pattern at the proximal and distal ends of injured sensory and motor nerves. Hence, in our study, the protein expression and secretion of Sema3A in sensory and motor SCs and the expression of its receptor Neuropilin-1 (Nrp1) in dorsal root ganglia (DRG) sensory neurons (SNs) and spinal cord motor neurons (MNs) were detected by Western blot and ELISA. The effect of Sema3A at different concentrations on neurite growth of sensory and motor neurons was observed by immunostaining. Also, by blocking the Nrp1 receptor on neurons, the effect of Sema3A on neurite growth was observed. Finally, we observed the neurite growth of sensory and motor neurons cocultured with Sema3A siRNA transfected SCs by immunostaining. The results suggested that the expression and secretion of Sema3A in sensory SCs are more significant than that in motor SCs, and the expression of its receptor Nrp1 in SNs is higher than in MNs. Sema3A could inhibit the neurite growth of sensory and motor neurons via Nrp1, and Sema3A has a more substantial effect on the neurite growth of SNs. These data provide evidence that SC-secreted Sema3A might play a role in selective regeneration by a preferential effect on SNs.
Collapse
|
10
|
Flynn CGK, Ginkel PRV, Hubert KA, Guo Q, Hrycaj SM, McDermott AE, Madruga A, Miller AP, Wellik DM. Hox11-expressing interstitial cells contribute to adult skeletal muscle at homeostasis. Development 2023; 150:dev201026. [PMID: 36815629 PMCID: PMC10110422 DOI: 10.1242/dev.201026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/13/2023] [Indexed: 02/24/2023]
Abstract
Interstitial stromal cells play critical roles in muscle development, regeneration and repair and we have previously reported that Hoxa11 and Hoxd11 are expressed in the interstitial cells of muscles attached to the zeugopod, and are crucial for the proper embryonic patterning of these muscles. Hoxa11eGFP expression continues in a subset of muscle interstitial cells through adult stages. The induction of Hoxa11-CreERT2-mediated lineage reporting (Hoxa11iTom) at adult stages in mouse results in lineage induction only in the interstitial cells. However, Hoxa11iTom+ cells progressively contribute to muscle fibers at subsequent stages. The contribution to myofibers exceeds parallel Pax7-CreERT2-mediated lineage labeling. Nuclear-specific lineage labeling demonstrates that Hoxa11-expressing interstitial cells contribute nuclear contents to myofibers. Crucially, at no point after Hoxa11iTom induction are satellite cells lineage labeled. When examined in vitro, isolated Hoxa11iTom+ interstitial cells are not capable of forming myotubes, but Hoxa11iTom+ cells can contribute to differentiating myotubes, supporting Hox-expressing interstitial cells as a new population of muscle progenitors, but not stem cells. This work adds to a small but growing body of evidence that supports a satellite cell-independent source of muscle tissue in vivo.
Collapse
Affiliation(s)
- Corey G. K. Flynn
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Paul R. Van Ginkel
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Katharine A. Hubert
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Genetics Training Program, University of Wisconsin-Madison, Madison, WI 53703, USA
| | - Qingyuan Guo
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Steven M. Hrycaj
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aubrey E. McDermott
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Angelo Madruga
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Anna P. Miller
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Deneen M. Wellik
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
11
|
Gaulton N, Wakelin G, Young LV, Wotherspoon S, Kamal M, Parise G, Nederveen JP, Holwerda A, Verdijk LB, van Loon LJC, Snijders T, Johnston AP. Twist2-expressing cells reside in human skeletal muscle and are responsive to aging and resistance exercise training. FASEB J 2022; 36:e22642. [PMID: 36374263 DOI: 10.1096/fj.202201349rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
Skeletal muscle is maintained and repaired by sub-laminar, Pax7-expressing satellite cells. However, recent mouse investigations have described a second myogenic progenitor population that resides within the myofiber interstitium and expresses the transcription factor Twist2. Twist2-expressing cells exclusively repair and maintain type IIx/b muscle fibers. Currently, it is unknown if Twist2-expressing cells are present in human skeletal muscle and if they function as myogenic progenitors. Here, we perform a combination of single-cell RNA sequencing analysis and immunofluorescence staining to demonstrate the identity and localization of Twist2-expressing cells in human skeletal muscle. Twist2-expressing cells were identified to be anatomically and transcriptionally comparable to fibro-adipogenic progenitors (FAPs) and lack expression of typical satellite cell markers such as Pax7. Comparative analysis revealed that human and mouse Twist2-expressing cells were highly transcriptionally analogous and resided within the same anatomical structures in vivo. Examination of young and aged skeletal muscle biopsy samples revealed that Twist2-positive cells are more prevalent in aged muscle and increase following 12-weeks of resistance exercise training (RET) in humans. However, the quantity of Twist2-positive cells was not correlated with indices of muscle mass or muscle fiber cross-sectional area (CSA) in young or older muscle, and their abundance was surprisingly, negatively correlated with CSA and myonuclear domain size following RET. Taken together, we have identified cells expressing Twist2 in human skeletal muscle which are responsive to aging and exercise. Further examination of their myogenic potential is warranted.
Collapse
Affiliation(s)
- Nick Gaulton
- Department of Applied Human Sciences, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Griffen Wakelin
- Department of Applied Human Sciences, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada.,Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Laura V Young
- Department of Applied Human Sciences, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Scott Wotherspoon
- Queen Elizabeth Hospital, Charlottetown, Prince Edward Island, Canada
| | - Michael Kamal
- Department of Kinesiology, Faculty of Science, McMaster University, Ontario, Hamilton, Canada
| | - Gianni Parise
- Department of Kinesiology, Faculty of Science, McMaster University, Ontario, Hamilton, Canada
| | - Joshua P Nederveen
- Department of Pediatrics, McMaster University Children's Hospital, Hamilton, Ontario, Canada
| | - Andy Holwerda
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Lex B Verdijk
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Luc J C van Loon
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Tim Snijders
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Adam P Johnston
- Department of Applied Human Sciences, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada.,Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
12
|
R-spondin3 is a myokine that differentiates myoblasts to type I fibres. Sci Rep 2022; 12:13020. [PMID: 35906363 PMCID: PMC9338073 DOI: 10.1038/s41598-022-16640-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/13/2022] [Indexed: 12/03/2022] Open
Abstract
Muscle fibres are broadly categorised into types I and II; the fibre-type ratio determines the contractile and metabolic properties of skeletal muscle tissue. The maintenance of type I fibres is essential for the prevention of obesity and the treatment of muscle atrophy caused by type 2 diabetes or unloading. Some reports suggest that myokines are related to muscle fibre type determination. We thus explored whether a myokine determines whether satellite cells differentiate to type I fibres. By examining the fibre types separately, we identified R-spondin 3 (Rspo3) as a myokine of interest, a secreted protein known as an activator of Wnt signalling pathways. To examine whether Rspo3 induces type I fibres, primary myoblasts prepared from mouse soleus muscles were exposed to a differentiation medium containing the mouse recombinant Rspo3 protein. Expression of myosin heavy chain (MyHC) I, a marker of type I fibre, significantly increased in the differentiated myotubes compared with a control. The Wnt/β-catenin pathway was shown to be the dominant signalling pathway which induces Rspo3-induced MyHC I expression. These results revealed Rspo3 as a myokine that determines whether satellite cells differentiate to type I fibres.
Collapse
|
13
|
Lai YJ, Tsai FC, Chang GJ, Chang SH, Huang CC, Chen WJ, Yeh YH. miR-181b targets semaphorin 3A to mediate TGF-β-induced endothelial-mesenchymal transition related to atrial fibrillation. J Clin Invest 2022; 132:142548. [PMID: 35775491 PMCID: PMC9246393 DOI: 10.1172/jci142548] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
Atrial fibrosis is an essential contributor to atrial fibrillation (AF). It remains unclear whether atrial endocardial endothelial cells (AEECs) that undergo endothelial-mesenchymal transition (EndMT) are among the sources of atrial fibroblasts. We studied human atria, TGF-β-treated human AEECs, cardiac-specific TGF-β-transgenic mice, and heart failure rabbits to identify the underlying mechanism of EndMT in atrial fibrosis. Using isolated AEECs, we found that miR-181b was induced in TGF-β-treated AEECs, which decreased semaphorin 3A (Sema3A) and increased EndMT markers, and these effects could be reversed by a miR-181b antagomir. Experiments in which Sema3A was increased by a peptide or decreased by a siRNA in AEECs revealed a mechanistic link between Sema3A and LIM-kinase 1/phosphorylated cofilin (LIMK/p-cofilin) signaling and suggested that Sema3A is upstream of LIMK in regulating actin remodeling through p-cofilin. Administration of the miR-181b antagomir or recombinant Sema3A to TGF-β-transgenic mice evoked increased Sema3A, reduced EndMT markers, and significantly decreased atrial fibrosis and AF vulnerability. Our study provides a mechanistic link between the induction of EndMT by TGF-β via miR-181b/Sema3A/LIMK/p-cofilin signaling to atrial fibrosis. Blocking miR-181b and increasing Sema3A are potential strategies for AF therapeutic intervention.
Collapse
Affiliation(s)
- Ying-Ju Lai
- Cardiovascular Department, Chang Gung Memorial Hospital, Tao Yuan, Taiwan.,Department of Respiratory Therapy, Chang Gung University College of Medicine, Tao Yuan, Taiwan.,Department of Respiratory Care, Chang Gung University of Science and Technology, Chia Yi, Taiwan
| | - Feng-Chun Tsai
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Tao Yuan, Taiwan.,Department of Medicine and
| | - Gwo-Jyh Chang
- Cardiovascular Department, Chang Gung Memorial Hospital, Tao Yuan, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Tao Yuan, Taiwan
| | - Shang-Hung Chang
- Cardiovascular Department, Chang Gung Memorial Hospital, Tao Yuan, Taiwan.,Department of Medicine and
| | - Chung-Chi Huang
- Department of Respiratory Therapy, Chang Gung University College of Medicine, Tao Yuan, Taiwan.,Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Tao Yuan, Taiwan
| | - Wei-Jan Chen
- Cardiovascular Department, Chang Gung Memorial Hospital, Tao Yuan, Taiwan.,Department of Medicine and
| | - Yung-Hsin Yeh
- Cardiovascular Department, Chang Gung Memorial Hospital, Tao Yuan, Taiwan.,Department of Medicine and
| |
Collapse
|
14
|
Computational analysis and verification of molecular genetic targets for glioblastoma. Biosci Rep 2020; 40:225082. [PMID: 32469390 PMCID: PMC7298167 DOI: 10.1042/bsr20201401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common malignant brain tumor with a poor prognosis. The initial treatment for high-grade gliomas is surgical excision. However, even with concomitant use of radiation or chemotherapy, patients are still prone to recurrence. The specific pathogenesis of GBM is still controversial. METHODS Differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) between GBM and normal brain tissues were screened. P-value was obtained by Bayes test based on the limma package. Statistical significance was set as P-value <0.05 and |Fold change (FC)| > 0.2 (GSE90886); P-value <0.05 and |FC| > 1 (GSE116520, GSE103228). Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG), protein-protein interaction (PPI) network were performed. Hub genes were selected from miRNA target genes and DEGs. GBM and normal brain tissues were extracted to verify the expression. RESULTS A total of 100 DEGs were overlapped in both datasets. Analysis of pathways and process enrichment tests indicated that ion transport, positive regulation of macromolecule metabolic process, cell cycle, axon guidance were enriched in the GBM. Sixteen hub genes were identified. Hub genes ADARB1 and neuropilin 1 (NRP1) were significantly associated with overall survival (OS) and disease-free survival (DFS) (P<0.05). Eukaryotic translation termination factor 1 (ETF1) was associated with DFS (P<0.05). CONCLUSIONS DEGs and DEMs were found between GBM tumor tissues and normal brain tissues. These biomarkers may be used as targets for early diagnosis and specific treatment.
Collapse
|
15
|
Abstract
Satellite cells are the main muscle-resident cells responsible for muscle regeneration. Much research has described this population as being heterogeneous, but little is known about the different roles each subpopulation plays. Recent advances in the field have utilized the power of single-cell analysis to better describe and functionally characterize subpopulations of satellite cells as well as other cell groups comprising the muscle tissue. Furthermore, emerging technologies are opening the door to answering as-yet-unresolved questions pertaining to satellite cell heterogeneity and cell fate decisions.
Collapse
Affiliation(s)
- John Saber
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Alexander Y.T. Lin
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Michael A. Rudnicki
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| |
Collapse
|