1
|
Lei P, Zhang Z, An X, Feng L, Shen X, Xue H, Xu L, Shao J, Yu F, Liu X. HLS1 interacts with ATG8 to negatively regulate the ABS3-mediated plant senescence pathway. Cell Rep 2025; 44:115507. [PMID: 40215167 DOI: 10.1016/j.celrep.2025.115507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/26/2025] [Accepted: 03/12/2025] [Indexed: 04/26/2025] Open
Abstract
In Arabidopsis, late endosome-localized ABNORMAL SHOOT 3 (ABS3) promotes senescence through a direct interaction with AUTOPHAGY8 (ATG8). However, the molecular mechanisms underlying the regulation of the ABS3-mediated senescence pathway are not well understood. Here, we report that HOOKLESS 1 (HLS1) acts as a negative regulator of plant senescence and the ABS3-mediated senescence pathway. We identify the localizations of HLS1 at the plasma membrane and endosomes in addition to the nucleus. Mechanistically, non-nucleus-localized HLS1 directly interacts with ATG8, attenuates the ABS3-ATG8 interaction, and inhibits the vacuolar degradation of ABS3, thereby antagonizing the senescence-promoting role of ABS3. Additionally, we show that the stability of HLS1 itself is negatively regulated during carbon deprivation-induced senescence. Finally, we find that HLS1 homologs in both Arabidopsis and wheat play a conserved role in senescence regulation. In summary, our findings show the functional link between HLS1, ABS3, and ATG8 in plant senescence regulation.
Collapse
Affiliation(s)
- Pei Lei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhaoliang Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xue An
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lixuan Feng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Xue
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liangchen Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingxia Shao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiayan Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Nobusawa T, Matsushima N, Ueda H, Yumoto E, Asahina M, Kusaba M. Extranuclear function of Arabidopsis HOOKLESS1 regulates pleiotropic developmental processes in a non-cell-autonomous manner. THE NEW PHYTOLOGIST 2025; 246:616-630. [PMID: 39945335 PMCID: PMC11923405 DOI: 10.1111/nph.20458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/23/2025] [Indexed: 03/21/2025]
Abstract
N-acetyltransferase HOOKLESS1 (HLS1) in Arabidopsis, a recognized pivotal factor in hook formation, is also implicated in multifaceted developmental processes including plastochron and leaf senescence. However, its molecular function remains to be elucidated. We utilized LC-MS for plant hormone quantification and implemented a series of molecular genetic and physiological approaches to analyze HLS1 functions. Our findings indicate that HLS1 functions in tissues distant from its expression sites in the regulation of apical hook formation, plastochron, and leaf senescence, implying its non-cell-autonomous mode of action. We observed that extranuclear localization of HLS1 can complement the hls1 phenotype, suggesting a revision of our understanding that HLS1 is a nuclear-specific histone acetyltransferase. The double mutant of HLS1 and its paralog shows highly pleiotropic and enhanced phenotypes similar to those of the double mutant of the putative carboxypeptidase gene ALTERED MERISTEM PROGRAM1 (AMP1) and its paralog. Genetic analysis revealed that HLS1 and AMP1 act in the same genetic pathway to regulate the plastochron. No significant differences in the contents of known plant hormones were observed in the hls1 mutant. HLS1 is an N-acetyltransferase that functions in a non-cell-autonomous manner across pleiotropic developmental phenomena in conjunction with AMP1, potentially independent of known plant hormone signaling.
Collapse
Affiliation(s)
- Takashi Nobusawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Naoya Matsushima
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Hiroaki Ueda
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Emi Yumoto
- Advanced Instrumental Analysis Center, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan
| | - Masashi Asahina
- Advanced Instrumental Analysis Center, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan
| | - Makoto Kusaba
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| |
Collapse
|
3
|
Gao L, Xu S, Zhang J, Kang J, Zhong S, Shi H. Promotion of seedling germination in Arabidopsis by B-box zinc-finger protein BBX32. Curr Biol 2024; 34:3152-3164.e6. [PMID: 38971148 DOI: 10.1016/j.cub.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/02/2024] [Accepted: 06/06/2024] [Indexed: 07/08/2024]
Abstract
Seed germination represents a determinant for plants to enter ecosystems and is thus regarded as a key ecological and agronomic trait. It is tightly regulated by a variety of environmental cues to ensure that seeds germinate under favorable conditions. Here, we characterize BBX32, a B-box zinc-finger protein, as an imbibition-stimulated positive regulator of seed germination. Belonging to subgroup V of the BBX family, BBX32 exhibits distinct characteristics compared with its close counterparts within the same subgroup. BBX32 is transiently induced at both the transcriptional and post-transcriptional levels in the embryo upon water absorption. Genetic evidence indicates that BBX32 acts upstream of the master transcription factor PHYTOCHROME-INTERACTING FACTOR 1 (PIF1) to facilitate light-induced seed germination. BBX32 directly interacts with PIF1, suppressing its protein-interacting and DNA-binding capabilities, thereby relieving PIF1's repression on seed germination. Furthermore, the imbibition-stimulated BBX32 functions in parallel with the light-induced transcription regulator HFR1 to collectively attenuate the transcriptional activities of PIF1. The BBX32-PIF1 de-repression module serves as a molecular connection that enables plants to integrate signals of water availability and light exposure, effectively coordinating the initiation of seed germination.
Collapse
Affiliation(s)
- Lulu Gao
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Sheng Xu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Jinming Zhang
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Jing Kang
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Shangwei Zhong
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, and School of Life Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China
| | - Hui Shi
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China.
| |
Collapse
|
4
|
Ma Y, Chang W, Li Y, Xu J, Song Y, Yao X, Wang L, Sun Y, Guo L, Zhang H, Liu X. Plant cuticles repress organ initiation and development during skotomorphogenesis in Arabidopsis. PLANT COMMUNICATIONS 2024; 5:100850. [PMID: 38409782 PMCID: PMC11211553 DOI: 10.1016/j.xplc.2024.100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/11/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
After germination in the dark, plants produce a shoot apical hook and closed cotyledons to protect the quiescent shoot apical meristem (SAM), which is critical for seedling survival during skotomorphogenesis. The factors that coordinate these processes, particularly SAM repression, remain enigmatic. Plant cuticles, multilayered structures of lipid components on the outermost surface of the aerial epidermis of all land plants, provide protection against desiccation and external environmental stresses. Whether and how cuticles regulate plant development are still unclear. Here, we demonstrate that mutants of BODYGUARD1 (BDG1) and long-chain acyl-CoA synthetase2 (LACS2), key genes involved in cutin biosynthesis, produce a short hypocotyl with an opened apical hook and cotyledons in which the SAM is activated during skotomorphogenesis. Light signaling represses expression of BDG1 and LACS2, as well as cutin biosynthesis. Transcriptome analysis revealed that cuticles are critical for skotomorphogenesis, particularly for the development and function of chloroplasts. Genetic and molecular analyses showed that decreased HOOKLESS1 expression results in apical hook opening in the mutants. When hypoxia-induced expression of LITTLE ZIPPER2 at the SAM promotes organ initiation in the mutants, the de-repressed expression of cell-cycle genes and the cytokinin response induce the growth of true leaves. Our results reveal previously unrecognized developmental functions of the plant cuticle during skotomorphogenesis and demonstrate a mechanism by which light initiates photomorphogenesis through dynamic regulation of cuticle synthesis to induce coordinated and systemic changes in organ development and growth during the skotomorphogenesis-to-photomorphogenesis transition.
Collapse
Affiliation(s)
- Yuru Ma
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Wenwen Chang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Yongpeng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Jiahui Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yongli Song
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Xinmiao Yao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Lei Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Yu Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Lin Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Hao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
5
|
Xiong J, Yang F, Wei F, Yang F, Lin H, Zhang D. Inhibition of SIZ1-mediated SUMOylation of HOOKLESS1 promotes light-induced apical hook opening in Arabidopsis. THE PLANT CELL 2023; 35:2027-2043. [PMID: 36890719 PMCID: PMC10226575 DOI: 10.1093/plcell/koad072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/19/2023] [Accepted: 02/12/2023] [Indexed: 05/12/2023]
Abstract
The apical hook protects cotyledons and the shoot apical meristem from mechanical injuries during seedling emergence from the soil. HOOKLESS1 (HLS1) is a central regulator of apical hook development, as a terminal signal onto which several pathways converge. However, how plants regulate the rapid opening of the apical hook in response to light by modulating HLS1 function remains unclear. In this study, we demonstrate that the small ubiquitin-like modifier (SUMO) E3 ligase SAP AND MIZ1 DOMAIN-CONTAINING LIGASE1 (SIZ1) interacts with HLS1 and mediates its SUMOylation in Arabidopsis thaliana. Mutating SUMO attachment sites of HLS1 results in impaired function of HLS1, indicating that HLS1 SUMOylation is essential for its function. SUMOylated HLS1 was more likely to assemble into oligomers, which are the active form of HLS1. During the dark-to-light transition, light induces rapid apical hook opening, concomitantly with a drop in SIZ1 transcript levels, resulting in lower HLS1 SUMOylation. Furthermore, ELONGATED HYPOCOTYL5 (HY5) directly binds to the SIZ1 promoter and suppresses its transcription. HY5-initiated rapid apical hook opening partially depended on HY5 inhibition of SIZ1 expression. Taken together, our study identifies a function for SIZ1 in apical hook development, providing a dynamic regulatory mechanism linking the post-translational modification of HLS1 during apical hook formation and light-induced apical hook opening.
Collapse
Affiliation(s)
- Jiawei Xiong
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, P.R. China
| | - Fabin Yang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, P.R. China
| | - Fan Wei
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, P.R. China
| | - Feng Yang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, P.R. China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, P.R. China
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, P.R. China
| |
Collapse
|
6
|
Wang Q, Sun J, Wang R, Zhang Z, Liu N, Jin H, Zhong B, Zhu Z. The origin, evolution and functional divergence of HOOKLESS1 in plants. Commun Biol 2023; 6:460. [PMID: 37101003 PMCID: PMC10133230 DOI: 10.1038/s42003-023-04849-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
Apical hooks are functional innovations only observed in angiosperms, which effectively protect the apical meristems out of damage during plant seedlings penetrating soil covers. Acetyltransferase like protein HOOKLESS1 (HLS1) in Arabidopsis thaliana is required for hook formation. However, the origin and evolution of HLS1 in plants are still not solved. Here, we traced the evolution of HLS1 and found that HLS1 originated in embryophytes. Moreover, we found that Arabidopsis HLS1 delayed plant flowering time, in addition to their well-known functions in apical hook development and newly reported roles in thermomorphogenesis. We further revealed that HLS1 interacted with transcription factor CO and repressed the expression of FT to delay flowering. Lastly, we compared the functional divergence of HLS1 among eudicot (A. thaliana), bryophytes (Physcomitrium patens and Marchantia polymorpha) and lycophyte (Selaginella moellendorffii). Although HLS1 from these bryophytes and lycophyte partially rescued the thermomorphogenesis defects in hls1-1 mutants, the apical hook defects and early flowering phenotypes could not be reversed by either P. patens, M. polymorpha or S. moellendorffii orthologs. These results illustrate that HLS1 proteins from bryophytes or lycophyte are able to modulate thermomorphogenesis phenotypes in A. thaliana likely through a conserved gene regulatory network. Our findings shed new light on the understanding of the functional diversity and origin of HLS1, which controls the most attractive innovations in angiosperms.
Collapse
Affiliation(s)
- Qi Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jingyan Sun
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ran Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Zhenhua Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Nana Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Huanhuan Jin
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ziqiang Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China.
| |
Collapse
|
7
|
Zhao Y, Shi H, Pan Y, Lyu M, Yang Z, Kou X, Deng XW, Zhong S. Sensory circuitry controls cytosolic calcium-mediated phytochrome B phototransduction. Cell 2023; 186:1230-1243.e14. [PMID: 36931246 DOI: 10.1016/j.cell.2023.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 08/23/2022] [Accepted: 02/03/2023] [Indexed: 03/18/2023]
Abstract
Although Ca2+ has long been recognized as an obligatory intermediate in visual transduction, its role in plant phototransduction remains elusive. Here, we report a Ca2+ signaling that controls photoreceptor phyB nuclear translocation in etiolated seedlings during dark-to-light transition. Red light stimulates acute cytosolic Ca2+ increases via phyB, which are sensed by Ca2+-binding protein kinases, CPK6 and CPK12 (CPK6/12). Upon Ca2+ activation, CPK6/12 in turn directly interact with and phosphorylate photo-activated phyB at Ser80/Ser106 to initiate phyB nuclear import. Non-phosphorylatable mutation, phyBS80A/S106A, abolishes nuclear translocation and fails to complement phyB mutant, which is fully restored by combining phyBS80A/S106A with a nuclear localization signal. We further show that CPK6/12 function specifically in the early phyB-mediated cotyledon expansion, while Ser80/Ser106 phosphorylation generally governs phyB nuclear translocation. Our results uncover a biochemical regulatory loop centered in phyB phototransduction and provide a paradigm for linking ubiquitous Ca2+ increases to specific responses in sensory stimulus processing.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Shi
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Ying Pan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Mohan Lyu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhixuan Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaoxia Kou
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China
| | - Shangwei Zhong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China.
| |
Collapse
|
8
|
Wang Y, Peng Y, Guo H. To curve for survival: Apical hook development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:324-342. [PMID: 36562414 DOI: 10.1111/jipb.13441] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Apical hook is a simple curved structure formed at the upper part of hypocotyls when dicot seeds germinate in darkness. The hook structure is transient but essential for seedlings' survival during soil emergence due to its efficient protection of the delicate shoot apex from mechanical injury. As a superb model system for studying plant differential growth, apical hook has fascinated botanists as early as the Darwin age, and significant advances have been achieved at both the morphological and molecular levels to understand how apical hook development is regulated. Here, we will mainly summarize the research progress at these two levels. We will also briefly compare the growth dynamics between apical hook and hypocotyl gravitropic bending at early seed germination phase, with the aim to deduce a certain consensus on their connections. Finally, we will outline the remaining questions and future research perspectives for apical hook development.
Collapse
Affiliation(s)
- Yichuan Wang
- Department of Biology, School of Life Sciences, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yang Peng
- Department of Biology, School of Life Sciences, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hongwei Guo
- Department of Biology, School of Life Sciences, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
9
|
Zhang L, He G, Li Y, Yang Z, Liu T, Xie X, Kong X, Sun J. PIL transcription factors directly interact with SPLs and repress tillering/branching in plants. THE NEW PHYTOLOGIST 2022; 233:1414-1425. [PMID: 34800046 DOI: 10.1111/nph.17872] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/14/2021] [Indexed: 05/27/2023]
Abstract
Tillering is an important parameter of plant architecture in cereal crops. In this study, we identified the PHYTOCHROME-INTERACTING FACTOR-LIKE (PIL) family transcription factors as new repressors of tillering in cereal crops. Using biochemical and genetic approaches, we explore the roles of TaPIL1 in regulating wheat plant architecture. We found that the PIL protein TaPIL1 controls tiller number in wheat. Overexpression of TaPIL1 reduces wheat tiller number; additionally, overexpression of TaPIL1-SUPERMAN repression domain increases wheat tiller number. Furthermore, we show that TaPIL1 activates the transcriptional expression of wheat TEOSINTE BRANCHED1 (TaTB1); moreover, TaPIL1 physically interacts with wheat SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (TaSPL)3/17, which are activators of TaTB1 transcription. In rice, overexpression and loss-of-function mutations of OsPIL11 reduce or increase tiller number by regulating the expression of OsTB1. In Arabidopsis, we demonstrate that PHYTOCHROME-INTERACTING FACTOR 4 interacts with SPL9 to inhibit shoot branching. This study reveals that PIL family transcription factors directly interact with SPLs and play an important role in repressing tillering/branching in plants.
Collapse
Affiliation(s)
- Lichao Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guanhua He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yaping Li
- Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Ziyi Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tianqi Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianzhi Xie
- Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiuying Kong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqiang Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
10
|
Abstract
The perception of light signals by the phytochrome family of photoreceptors has a crucial influence on almost all aspects of growth and development throughout a plant's life cycle. The holistic regulatory networks orchestrated by phytochromes, including conformational switching, subcellular localization, direct protein-protein interactions, transcriptional and posttranscriptional regulations, and translational and posttranslational controls to promote photomorphogenesis, are highly coordinated and regulated at multiple levels. During the past decade, advances using innovative approaches have substantially broadened our understanding of the sophisticated mechanisms underlying the phytochrome-mediated light signaling pathways. This review discusses and summarizes these discoveries of the role of the modular structure of phytochromes, phytochrome-interacting proteins, and their functions; the reciprocal modulation of both positive and negative regulators in phytochrome signaling; the regulatory roles of phytochromes in transcriptional activities, alternative splicing, and translational regulation; and the kinases and E3 ligases that modulate PHYTOCHROME INTERACTING FACTORs to optimize photomorphogenesis.
Collapse
Affiliation(s)
- Mei-Chun Cheng
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA;
| | - Praveen Kumar Kathare
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA;
| | - Inyup Paik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA;
| | - Enamul Huq
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA;
| |
Collapse
|
11
|
He G, Zhang Y, Liu P, Jing Y, Zhang L, Zhu Y, Kong X, Zhao H, Zhou Y, Sun J. The transcription factor TaLAX1 interacts with Q to antagonistically regulate grain threshability and spike morphogenesis in bread wheat. THE NEW PHYTOLOGIST 2021; 230:988-1002. [PMID: 33521967 DOI: 10.1111/nph.17235] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
The domestication gene Q is largely responsible for the widespread cultivation of wheat because it confers multiple domestication traits. However, the underlying molecular mechanisms of how Q regulates these domestication traits remain unclear. In this study, we identify a Q-interacting protein TaLAX1, a basic helix-loop-helix transcription factor, through yeast two-hybrid assays. Using biochemical and genetic approaches, we explore the roles of TaLAX1 in regulating wheat domestication traits. Overexpression of TaLAX1 produces phenotypes, reminiscent of the q allele; loss-of-function Talax1 mutations confer compact spikes, largely similar to the Q-overexpression wheat lines. The two transcription factors TaLAX1 and Q disturb each other's activity to antagonistically regulate the expression of the lignin biosynthesis-related gene TaKNAT7-4D. More interestingly, a natural variation (InDel, +/- TATA), which occurs in the promoter of TaLAX1, is associated with the promoter activity difference between the D subgenome of bread wheat and its ancestor Aegilops tauschii accession T093. This study reveals that the transcription factor TaLAX1 physically interacts with Q to antagonistically regulate wheat domestication traits and a natural variation (InDel, +/- TATA) is associated with the diversification of TaLAX1 promoter activity.
Collapse
Affiliation(s)
- Guanhua He
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yunwei Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Pan Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yexing Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lichao Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Xiuying Kong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huixian Zhao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Jiaqiang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
12
|
Li J, Hiltbrunner A. Is the Pr form of phytochrome biologically active in the nucleus? MOLECULAR PLANT 2021; 14:535-537. [PMID: 33676024 DOI: 10.1016/j.molp.2021.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/18/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Andreas Hiltbrunner
- Institute of Biology II, Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
13
|
Liu S, Chen H. Ethylene Signaling Facilitates Plant Adaption to Physical Barriers. FRONTIERS IN PLANT SCIENCE 2021; 12:697988. [PMID: 34394151 PMCID: PMC8358396 DOI: 10.3389/fpls.2021.697988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/02/2021] [Indexed: 05/11/2023]
Abstract
The morphological changes are usually observed in the terrestrial plants to respond to physical barriers. The phytohormone ethylene plays an essential role in the morphological development of plants encountering exogenous mechanical impedance, which enables plants to grow optimally in response to physical barriers. Ethylene is shown to regulate these developmental processes directly or in concert with other phytohormones, especially auxin. In this mini review, the involvement of ethylene action in seedling emergence from the soil, root movement within the soil, and parasitic plant invasion of the host plant are described.
Collapse
Affiliation(s)
- Simu Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- *Correspondence: Simu Liu,
| | - Hui Chen
- Guangdong Key Laboratory of Genome Instability and Human Disease, School of Medicine, Shenzhen University, Shenzhen, China
- Hui Chen, ;
| |
Collapse
|
14
|
Wu Q, Li Y, Lyu M, Luo Y, Shi H, Zhong S. Touch-induced seedling morphological changes are determined by ethylene-regulated pectin degradation. SCIENCE ADVANCES 2020; 6:6/48/eabc9294. [PMID: 33246960 PMCID: PMC7695475 DOI: 10.1126/sciadv.abc9294] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/15/2020] [Indexed: 05/08/2023]
Abstract
How mechanical forces regulate plant growth is a fascinating and long-standing question. After germination underground, buried seedlings have to dynamically adjust their growth to respond to mechanical stimulation from soil barriers. Here, we designed a lid touch assay and used atomic force microscopy to investigate the mechanical responses of seedlings during soil emergence. Touching seedlings induced increases in cell wall stiffness and decreases in cell elongation, which were correlated with pectin degradation. We revealed that PGX3, which encodes a polygalacturonase, mediates touch-imposed alterations in the pectin matrix and the mechanics of morphogenesis. Furthermore, we found that ethylene signaling is activated by touch, and the transcription factor EIN3 directly associates with PGX3 promoter and is required for touch-repressed PGX3 expression. By uncovering the link between mechanical forces and cell wall remodeling established via the EIN3-PGX3 module, this work represents a key step in understanding the molecular framework of touch-induced morphological changes.
Collapse
Affiliation(s)
- Qingqing Wu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yue Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Mohan Lyu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yiwen Luo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Shi
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Shangwei Zhong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
15
|
Allosteric deactivation of PIFs and EIN3 by microproteins in light control of plant development. Proc Natl Acad Sci U S A 2020; 117:18858-18868. [PMID: 32694206 DOI: 10.1073/pnas.2002313117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Buried seedlings undergo dramatic developmental transitions when they emerge from soil into sunlight. As central transcription factors suppressing light responses, PHYTOCHROME-INTERACTING FACTORs (PIFs) and ETHYLENE-INSENSITIVE 3 (EIN3) actively function in darkness and must be promptly repressed upon light to initiate deetiolation. Microproteins are evolutionarily conserved small single-domain proteins that act as posttranslational regulators in eukaryotes. Although hundreds to thousands of microproteins are predicted to exist in plants, their target molecules, biological roles, and mechanisms of action remain largely unknown. Here, we show that two microproteins, miP1a and miP1b (miP1a/b), are robustly stimulated in the dark-to-light transition. miP1a/b are primarily expressed in cotyledons and hypocotyl, exhibiting tissue-specific patterns similar to those of PIFs and EIN3 We demonstrate that PIFs and EIN3 assemble functional oligomers by self-interaction, while miP1a/b directly interact with and disrupt the oligomerization of PIFs and EIN3 by forming nonfunctional protein complexes. As a result, the DNA binding capacity and transcriptional activity of PIFs and EIN3 are predominantly suppressed. These biochemical findings are further supported by genetic evidence. miP1a/b positively regulate photomorphogenic development, and constitutively expressing miP1a/b rescues the delayed apical hook unfolding and cotyledon development of plants overexpressing PIFs and EIN3 Our study reveals that microproteins provide a temporal and negative control of the master transcription factors' oligomerization to achieve timely developmental transitions upon environmental changes.
Collapse
|
16
|
Han X, Huang X, Deng XW. The Photomorphogenic Central Repressor COP1: Conservation and Functional Diversification during Evolution. PLANT COMMUNICATIONS 2020; 1:100044. [PMID: 33367240 PMCID: PMC7748024 DOI: 10.1016/j.xplc.2020.100044] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/19/2020] [Accepted: 04/07/2020] [Indexed: 05/23/2023]
Abstract
Green plants on the earth have evolved intricate mechanisms to acclimatize to and utilize sunlight. In Arabidopsis, light signals are perceived by photoreceptors and transmitted through divergent but overlapping signaling networks to modulate plant photomorphogenic development. COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1) was first cloned as a central repressor of photomorphogenesis in higher plants and has been extensively studied for over 30 years. It acts as a RING E3 ubiquitin ligase downstream of multiple photoreceptors to target key light-signaling regulators for degradation, primarily as part of large protein complexes. The mammalian counterpart of COP1 is a pluripotent regulator of tumorigenesis and metabolism. A great deal of information on COP1 has been derived from whole-genome sequencing and functional studies in lower green plants, which enables us to illustrate its evolutionary history. Here, we review the current understanding about COP1, with a focus on the conservation and functional diversification of COP1 and its signaling partners in different taxonomic clades.
Collapse
Affiliation(s)
- Xue Han
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Peking University-Southern University of Science and Technology Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Peking University-Southern University of Science and Technology Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
17
|
Jin H, Lin J, Zhu Z. PIF4 and HOOKLESS1 Impinge on Common Transcriptome and Isoform Regulation in Thermomorphogenesis. PLANT COMMUNICATIONS 2020; 1:100034. [PMID: 33367235 PMCID: PMC7748007 DOI: 10.1016/j.xplc.2020.100034] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/12/2019] [Accepted: 02/14/2020] [Indexed: 05/04/2023]
Abstract
High temperature activates the transcription factor PHYTOCHROME-INTERACTING FACTOR4 (PIF4) to stimulate auxin signaling, which causes hypocotyl elongation and leaf hyponasty (thermomorphogenesis). HOOKLESS1 (HLS1) is a recently reported positive regulator of thermomorphogenesis, but the molecular mechanisms by which HLS1 regulates thermomorphogenesis remain unknown. In this study, we initially compared PIF4- and/or HLS1-dependent differential gene expression (DEG) upon high-temperature treatment. We found that a large number of genes are coregulated by PIF4 and HLS1, especially genes involved in plant growth or defense responses. Moreover, we found that HLS1 interacts with PIF4 to form a regulatory module and that, among the HLS1-PIF4-coregulated genes, 27.7% are direct targets of PIF4. We also identified 870 differentially alternatively spliced genes (DASGs) in wild-type plants under high temperature. Interestingly, more than half of these DASG events (52.4%) are dependent on both HLS1 and PIF4, and the spliceosome-defective mutant plantsexhibit a hyposensitive response to high temperature, indicating that DASGs are required for thermomorphogenesis. Further comparative analyses showed that the HLS1/PIF4-coregulated DEGs and DASGs exhibit almost no overlap, suggesting that high temperature triggers two distinct strategies to control plant responses and thermomorphogenesis. Taken together, these results demonstrate that the HLS1-PIF4 module precisely controls both transcriptional and posttranscriptional regulation during plant thermomorphogenesis.
Collapse
Affiliation(s)
- Huanhuan Jin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jingya Lin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ziqiang Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730000, China
- Corresponding author
| |
Collapse
|