1
|
Wuergezhen D, Gindroz E, Morita R, Hashimoto K, Abe T, Kiyonari H, Fujiwara H. An eGFP-Col4a2 mouse model reveals basement membrane dynamics underlying hair follicle morphogenesis. J Cell Biol 2025; 224:e202404003. [PMID: 39656438 PMCID: PMC11629887 DOI: 10.1083/jcb.202404003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/26/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Precisely controlled remodeling of the basement membrane (BM) is crucial for morphogenesis, but its molecular and tissue-level dynamics, underlying mechanisms, and functional significance in mammals remain largely unknown due to limited visualization tools. We developed mouse lines in which the endogenous collagen IV gene (Col4a2) was fused with a fluorescent tag. Through live imaging of developing hair follicles, we reveal a spatial gradient in the turnover rate of COL4A2 that is closely coupled with both the BM expansion rate and the proliferation rate of epithelial progenitors. Epithelial progenitors are displaced with directionally expanding BMs but do not actively migrate on stationary BM. The addition of a matrix metalloproteinase inhibitor delays COL4A2 turnover, restrains BM expansion, and increases perpendicular divisions of epithelial progenitors, altering hair follicle morphology. Our findings highlight the spatially distinct dynamics of BM and their key roles in orchestrating progenitor cell behavior and organ shape during development.
Collapse
Affiliation(s)
- Duligengaowa Wuergezhen
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Graduate School of Medicine, Osaka University, Suita, Japan
| | - Eleonore Gindroz
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Ritsuko Morita
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Kei Hashimoto
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hironobu Fujiwara
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
2
|
Díaz-de-la-Loza MDC, Stramer BM. The extracellular matrix in tissue morphogenesis: No longer a backseat driver. Cells Dev 2024; 177:203883. [PMID: 37935283 DOI: 10.1016/j.cdev.2023.203883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
The forces driving tissue morphogenesis are thought to originate from cellular activities. While it is appreciated that extracellular matrix (ECM) may also be involved, ECM function is assumed to be simply instructive in modulating the cellular behaviors that drive changes to tissue shape. However, there is increasing evidence that the ECM may not be the passive player portrayed in developmental biology textbooks. In this review we highlight examples of embryonic ECM dynamics that suggest cell-independent activity, along with developmental processes during which localized ECM alterations and ECM-autonomous forces are directing changes to tissue shape. Additionally, we discuss experimental approaches to unveil active ECM roles during tissue morphogenesis. We propose that it may be time to rethink our general definition of morphogenesis as a cellular-driven phenomenon and incorporate an underappreciated, and surprisingly dynamic ECM.
Collapse
Affiliation(s)
| | - Brian M Stramer
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| |
Collapse
|
3
|
Serna-Morales E, Sánchez-Sánchez BJ, Marcotti S, Nichols A, Bhargava A, Dragu A, Hirvonen LM, Díaz-de-la-Loza MDC, Mink M, Cox S, Rayfield E, Lee RM, Hobson CM, Chew TL, Stramer BM. Extracellular matrix assembly stress initiates Drosophila central nervous system morphogenesis. Dev Cell 2023; 58:825-835.e6. [PMID: 37086718 PMCID: PMC10390342 DOI: 10.1016/j.devcel.2023.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 12/12/2022] [Accepted: 03/05/2023] [Indexed: 04/24/2023]
Abstract
Forces controlling tissue morphogenesis are attributed to cellular-driven activities, and any role for extracellular matrix (ECM) is assumed to be passive. However, all polymer networks, including ECM, can develop autonomous stresses during their assembly. Here, we examine the morphogenetic function of an ECM before reaching homeostatic equilibrium by analyzing de novo ECM assembly during Drosophila ventral nerve cord (VNC) condensation. Asymmetric VNC shortening and a rapid decrease in surface area correlate with the exponential assembly of collagen IV (Col4) surrounding the tissue. Concomitantly, a transient developmentally induced Col4 gradient leads to coherent long-range flow of ECM, which equilibrates the Col4 network. Finite element analysis and perturbation of Col4 network formation through the generation of dominant Col4 mutations that affect assembly reveal that VNC morphodynamics is partially driven by a sudden increase in ECM-driven surface tension. These data suggest that ECM assembly stress and associated network instabilities can actively participate in tissue morphogenesis.
Collapse
Affiliation(s)
- Eduardo Serna-Morales
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL London, UK
| | | | - Stefania Marcotti
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL London, UK
| | - Angus Nichols
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL London, UK
| | - Anushka Bhargava
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL London, UK
| | - Anca Dragu
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL London, UK
| | - Liisa M Hirvonen
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL London, UK
| | | | - Matyas Mink
- Institute of Medical Biology, University of Szeged, 6720 Szeged, Hungary
| | - Susan Cox
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL London, UK
| | - Emily Rayfield
- School of Earth Sciences, University of Bristol, BS8 1QU Bristol, UK
| | - Rachel M Lee
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Chad M Hobson
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Brian M Stramer
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL London, UK.
| |
Collapse
|
4
|
Matsubayashi Y. Dynamic movement and turnover of extracellular matrices during tissue development and maintenance. Fly (Austin) 2022; 16:248-274. [PMID: 35856387 PMCID: PMC9302511 DOI: 10.1080/19336934.2022.2076539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 01/05/2023] Open
Abstract
Extracellular matrices (ECMs) are essential for the architecture and function of animal tissues. ECMs have been thought to be highly stable structures; however, too much stability of ECMs would hamper tissue remodelling required for organ development and maintenance. Regarding this conundrum, this article reviews multiple lines of evidence that ECMs are in fact rapidly moving and replacing components in diverse organisms including hydra, worms, flies, and vertebrates. Also discussed are how cells behave on/in such dynamic ECMs, how ECM dynamics contributes to embryogenesis and adult tissue homoeostasis, and what molecular mechanisms exist behind the dynamics. In addition, it is highlighted how cutting-edge technologies such as genome engineering, live imaging, and mathematical modelling have contributed to reveal the previously invisible dynamics of ECMs. The idea that ECMs are unchanging is to be changed, and ECM dynamics is emerging as a hitherto unrecognized critical factor for tissue development and maintenance.
Collapse
Affiliation(s)
- Yutaka Matsubayashi
- Department of Life and Environmental Sciences, Bournemouth University, Talbot Campus, Dorset, Poole, Dorset, UK
| |
Collapse
|