1
|
Moses E, Atlan T, Sun X, Franěk R, Siddiqui A, Marinov GK, Shifman S, Zucker DM, Oron-Gottesman A, Greenleaf WJ, Cohen E, Ram O, Harel I. The killifish germline regulates longevity and somatic repair in a sex-specific manner. NATURE AGING 2024; 4:791-813. [PMID: 38750187 DOI: 10.1038/s43587-024-00632-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/10/2024] [Indexed: 05/22/2024]
Abstract
Classical evolutionary theories propose tradeoffs among reproduction, damage repair and lifespan. However, the specific role of the germline in shaping vertebrate aging remains largely unknown. In this study, we used the turquoise killifish (Nothobranchius furzeri) to genetically arrest germline development at discrete stages and examine how different modes of infertility impact life history. We first constructed a comprehensive single-cell gonadal atlas, providing cell-type-specific markers for downstream phenotypic analysis. We show here that germline depletion-but not arresting germline differentiation-enhances damage repair in female killifish. Conversely, germline-depleted males instead showed an extension in lifespan and rejuvenated metabolic functions. Through further transcriptomic analysis, we highlight enrichment of pro-longevity pathways and genes in germline-depleted male killifish and demonstrate functional conservation of how these factors may regulate longevity in germline-depleted Caenorhabditis elegans. Our results, therefore, demonstrate that different germline manipulation paradigms can yield pronounced sexually dimorphic phenotypes, implying alternative responses to classical evolutionary tradeoffs.
Collapse
Affiliation(s)
- Eitan Moses
- Department of Genetics, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Tehila Atlan
- Department of Genetics, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Xue Sun
- Department of Biochemistry, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Roman Franěk
- Department of Genetics, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Atif Siddiqui
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University School of Medicine, Jerusalem, Israel
| | | | - Sagiv Shifman
- Department of Genetics, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - David M Zucker
- Department of Statistics and Data Science, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Oron-Gottesman
- Department of Genetics, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University School of Medicine, Jerusalem, Israel
| | - Oren Ram
- Department of Biochemistry, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Itamar Harel
- Department of Genetics, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel.
| |
Collapse
|
2
|
Chen S, Wu Z, Zhang Q, Li Y, Yao H, Chen S, Xie T, Lin JM. Gravity-Oriented Microfluidic Device for Biocompatible End-to-End Fabrication of Cell-Laden Microgels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306725. [PMID: 38287726 DOI: 10.1002/smll.202306725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/15/2023] [Indexed: 01/31/2024]
Abstract
Droplet microfluidics are extensively utilized to generate monodisperse cell-laden microgels in biomedical applications. However, maintaining cell viability is still challenging due to overexposure to harsh conditions in subsequent procedures that recover the microgels from the oil phase. Here, a gravity-oriented microfluidic device for end-to-end fabrication of cell-laden microgels is reported, which integrates dispersion, gelation, and extraction into a continuous workflow. This innovative on-chip extraction, driven by native buoyancy and kinetically facilitated by pseudosurfactant, exhibits 100% retrieval efficiency for microgels with a wide range of sizes and stiffnesses. The viability of encapsulated cells is perfectly maintained at ≈98% with minimal variations within and between batches. The end-to-end fabrication remarkably enhances the biocompatibility and practicality of microfluidics-based cell encapsulation and is promising to be compatible with various applications ranging from single-cell analysis to clinical therapy.
Collapse
Affiliation(s)
- Shulang Chen
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zengnan Wu
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qiang Zhang
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuxuan Li
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongren Yao
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shiyu Chen
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tianze Xie
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Tiemeijer BM, Tel J. Hydrogels for Single-Cell Microgel Production: Recent Advances and Applications. Front Bioeng Biotechnol 2022; 10:891461. [PMID: 35782502 PMCID: PMC9247248 DOI: 10.3389/fbioe.2022.891461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Single-cell techniques have become more and more incorporated in cell biological research over the past decades. Various approaches have been proposed to isolate, culture, sort, and analyze individual cells to understand cellular heterogeneity, which is at the foundation of every systematic cellular response in the human body. Microfluidics is undoubtedly the most suitable method of manipulating cells, due to its small scale, high degree of control, and gentle nature toward vulnerable cells. More specifically, the technique of microfluidic droplet production has proven to provide reproducible single-cell encapsulation with high throughput. Various in-droplet applications have been explored, ranging from immunoassays, cytotoxicity assays, and single-cell sequencing. All rely on the theoretically unlimited throughput that can be achieved and the monodispersity of each individual droplet. To make these platforms more suitable for adherent cells or to maintain spatial control after de-emulsification, hydrogels can be included during droplet production to obtain “microgels.” Over the past years, a multitude of research has focused on the possibilities these can provide. Also, as the technique matures, it is becoming clear that it will result in advantages over conventional droplet approaches. In this review, we provide a comprehensive overview on how various types of hydrogels can be incorporated into different droplet-based approaches and provide novel and more robust analytic and screening applications. We will further focus on a wide range of recently published applications for microgels and how these can be applied in cell biological research at the single- to multicell scale.
Collapse
Affiliation(s)
- B. M. Tiemeijer
- Laboratory of Immunoengineering, Department of Biomedical Engineering, TU Eindhoven, Eindhoven, Netherlands
- Institute of Complex Molecular Systems, TU Eindhoven, Eindhoven, Netherlands
| | - J. Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, TU Eindhoven, Eindhoven, Netherlands
- Institute of Complex Molecular Systems, TU Eindhoven, Eindhoven, Netherlands
- *Correspondence: J. Tel,
| |
Collapse
|
4
|
Herchcovici Levy S, Feldman Cohen S, Arnon L, Lahav S, Awawdy M, Alajem A, Bavli D, Sun X, Buganim Y, Ram O. Esrrb is a cell-cycle-dependent associated factor balancing pluripotency and XEN differentiation. Stem Cell Reports 2022; 17:1334-1350. [PMID: 35594859 PMCID: PMC9214067 DOI: 10.1016/j.stemcr.2022.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 01/02/2023] Open
Abstract
Cell cycle and differentiation decisions are linked; however, the underlying principles that drive these decisions are unclear. Here, we combined cell-cycle reporter system and single-cell RNA sequencing (scRNA-seq) profiling to study the transcriptomes of embryonic stem cells (ESCs) in the context of cell-cycle states and differentiation. By applying retinoic acid, to G1 and G2/M ESCs, we show that, while both populations can differentiate toward epiblast stem cells (EpiSCs), only G2/M ESCs could differentiate into extraembryonic endoderm cells. We identified Esrrb, a pluripotency factor that is upregulated during G2/M, as a driver of extraembryonic endoderm stem cell (XEN) differentiation. Furthermore, enhancer chromatin states based on wild-type (WT) and ESRRB knockout (KO) ESCs show association of ESRRB with XEN poised enhancers. G1 cells overexpressing Esrrb allow ESCs to produce XENs, while ESRRB-KO ESCs lost their potential to differentiate into XEN. Overall, this study reveals a vital link between Esrrb and cell-cycle states during the exit from pluripotency.
Collapse
Affiliation(s)
- Sapir Herchcovici Levy
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Sharon Feldman Cohen
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Lee Arnon
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Shlomtzion Lahav
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Muhammad Awawdy
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Adi Alajem
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Danny Bavli
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Xue Sun
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University, Hadassah Medical School, Jerusalem 91120, Israel
| | - Oren Ram
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel.
| |
Collapse
|
5
|
Abstract
This CloneSeq protocol combines clonal expansion inside 3D hydrogel spheres and droplet-based RNA sequencing to resolve the limited sensitivity of single-cell approaches. CloneSeq can reveal rare subpopulations and support cellular stemness. CloneSeq can be adapted to different biological systems to discover rare subpopulations by leveraging clonal enhanced sensitivity. Important considerations include the hydrogel composition, adaptation of 3D cultured clones to the inDrops system, and inherent adhesive properties of the cells. CloneSeq is only validated for cell lines so far. For complete details on the use and execution of this protocol, please refer to (Bavli et al., 2021).
Collapse
|