1
|
Parikh RY, Nayak D, Lin H, Gangaraju VK. Drosophila Modulo is essential for transposon silencing and developmental robustness. J Biol Chem 2025; 301:108210. [PMID: 39848495 PMCID: PMC11879677 DOI: 10.1016/j.jbc.2025.108210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/31/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025] Open
Abstract
Transposable element (TE) silencing in the germline is crucial for preserving genome integrity; its absence results in sterility and diminished developmental robustness. The Piwi-interacting RNA (piRNA) pathway is the primary small non-coding RNA mechanism by which TEs are silenced in the germline. Three piRNA binding proteins promote the piRNA pathway function in the germline- P-element-induced wimpy testis (Piwi), Aubergine (Aub), and Argonaute 3 (Ago3). Piwi mediates transcriptional silencing of TEs by promoting the deposition of the heterochromatin mark Histone 3 lysine nine trimethylation (H3K9me3) at TE genomic sites. Aub and Ago3 facilitate post-transcriptional silencing of TEs. Proteins and mechanisms that promote piRNA function in TE silencing are still being discovered. This study demonstrates that the Drosophila Modulo protein, a homolog of mammalian Nucleolin and an epigenetic regulator, is crucial for the enrichment of H3K9me3 at TEs. We show that Modulo interacts with Piwi and operates downstream of the Piwi-piRNA complex's entry into the nucleus. Lack of Modulo function impairs Piwi-interacting protein Panoramix's ability to target transposon RNAs. Furthermore, the reduced function of Modulo in the mother undermines developmental robustness and exacerbates neomorphic Kr[If-1]-induced ectopic eye outgrowths in the offspring. Maternal Modulo enhances developmental robustness by inhibiting TE activation and transcriptome variability associated with intrinsic genetic variation. Thus, Modulo is an essential component of the mechanism that operates in the maternal germline to facilitate TE silencing and ensure developmental robustness in the ensuing generation.
Collapse
Affiliation(s)
- Rasesh Y Parikh
- Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Dhananjaya Nayak
- Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University, New Haven, Connecticut, USA
| | - Vamsi K Gangaraju
- Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
2
|
Okwaro LA, Korb J. Histone Deacetylase 3 Is Involved in Maintaining Queen Hallmarks of a Termite. Mol Ecol 2024; 33:e17541. [PMID: 39367587 DOI: 10.1111/mec.17541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/16/2024] [Indexed: 10/06/2024]
Abstract
The role of epigenetics in regulating caste polyphenism in social insects has been debated. Here, we tested the importance of histone de/acetylation processes for the maintenance of queen hallmarks like a high fecundity and a long lifespan. To this end, we performed RNA interference experiments against histone deacetylase 3 (HDAC3) in the termite Cryptotermes secundus. Fat body transcriptomes and chemical communication profiles revealed that silencing of HDAC3 leads to signals indicative of queen hallmarks. This includes fostering of queen signalling, defence against ageing and a reduction of life-shortening IIS (insulin/insulin-like growth factor signalling) and endocrine JH (juvenile hormone) signalling via Kr-h1 (Krüppel-homologue 1). These observed patterns were similar to those of a protein-enriched diet, which might imply that histone acetylation conveys nutritional effects. Strikingly, in contrast to solitary insects, reduced endocrine JH signalling had no negative effect on fecundity-related vitellogenesis in the fat bodies. This suggests an uncoupling of longevity pathways from fecundity in fat bodies, which can help explain queens' extraordinary lifespans combined with high fecundity.
Collapse
Affiliation(s)
- Louis Allan Okwaro
- Evolutionary Biology & Ecology, University of Freiburg, Freiburg, Germany
| | - Judith Korb
- Evolutionary Biology & Ecology, University of Freiburg, Freiburg, Germany
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
3
|
Kazimierczyk M, Fedoruk-Wyszomirska A, Gurda-Woźna D, Wyszko E, Swiatkowska A, Wrzesinski J. The expression profiles of piRNAs and their interacting Piwi proteins in cellular model of renal development: Focus on Piwil1 in mitosis. Eur J Cell Biol 2024; 103:151444. [PMID: 39024988 DOI: 10.1016/j.ejcb.2024.151444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024] Open
Abstract
Piwi proteins and Piwi interacting RNAs, piRNAs, presented in germline cells play a role in transposon silencing during germline development. In contrast, the role of somatic Piwi proteins and piRNAs still remains obscure. Here, we characterize the expression pattern and distribution of piRNAs in human renal cells in terms of their potential role in kidney development. Further, we show that all PIWI genes are expressed at the RNA level, however, only PIWIL1 gene is detected at the protein level by western blotting in healthy and cancerous renal cells. So far, the expression of human Piwil1 protein has only been shown in testes and cancer cells, but not in healthy somatic cell lines. Since we observe only Piwil1 protein, the regulation of other PIWI genes is probably more intricated, and depends on environmental conditions. Next, we demonstrate that downregulation of Piwil1 protein results in a decrease in the rate of cell proliferation, while no change in the level of apoptotic cells is observed. Confocal microscopy analysis reveals that Piwil1 protein is located in both cellular compartments, cytoplasm and nucleus in renal cells. Interestingly, in nucleus region Piwil1 is observed close to the spindle during all phases of mitosis in all tested cell lines. It strongly indicates that Piwil1 protein plays an essential role in proliferation of somatic cells. Moreover, involvement of Piwil1 in cell division could, at least partly, explain invasion and metastasis of many types of cancer cells with upregulation of PIWIL1 gene expression. It also makes Piwil1 protein as a potential target in the anticancer therapy.
Collapse
Affiliation(s)
- Marek Kazimierczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan 61-704, Poland
| | | | - Dorota Gurda-Woźna
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan 61-704, Poland
| | - Eliza Wyszko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan 61-704, Poland
| | - Agata Swiatkowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan 61-704, Poland.
| | - Jan Wrzesinski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan 61-704, Poland.
| |
Collapse
|
4
|
Lawlor MA, Ellison CE. Evolutionary dynamics between transposable elements and their host genomes: mechanisms of suppression and escape. Curr Opin Genet Dev 2023; 82:102092. [PMID: 37517354 PMCID: PMC10530431 DOI: 10.1016/j.gde.2023.102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 08/01/2023]
Abstract
Transposable elements (TEs) are ubiquitous among eukaryotic species. Their evolutionary persistence is likely due to a combination of tolerogenic, evasive/antagonistic, and cooperative interactions with their host genomes. Here, we focus on metazoan species and review recent advances related to the harmful effects of TE insertions, including how epigenetic effects and TE-derived RNAs can damage host cells. We discuss new findings related to host pathways that silence TEs, such as the piRNA pathway and the APOBEC3 and Kruppel-associated box zinc finger gene families. Finally, we summarize novel strategies used by TEs to evade host silencing, including the Y chromosome as a permissive niche for TE mobilization and TE counterdefense strategies to block host silencing factors.
Collapse
|
5
|
Iyer SS, Sun Y, Seyfferth J, Manjunath V, Samata M, Alexiadis A, Kulkarni T, Gutierrez N, Georgiev P, Shvedunova M, Akhtar A. The NSL complex is required for piRNA production from telomeric clusters. Life Sci Alliance 2023; 6:e202302194. [PMID: 37399316 PMCID: PMC10313855 DOI: 10.26508/lsa.202302194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023] Open
Abstract
The NSL complex is a transcriptional activator. Germline-specific knockdown of NSL complex subunits NSL1, NSL2, and NSL3 results in reduced piRNA production from a subset of bidirectional piRNA clusters, accompanied by widespread transposon derepression. The piRNAs most transcriptionally affected by NSL2 and NSL1 RNAi map to telomeric piRNA clusters. At the chromatin level, these piRNA clusters also show decreased levels of H3K9me3, HP1a, and Rhino after NSL2 depletion. Using NSL2 ChIP-seq in ovaries, we found that this protein specifically binds promoters of telomeric transposons HeT-A, TAHRE, and TART Germline-specific depletion of NSL2 also led to a reduction in nuclear Piwi in nurse cells. Our findings thereby support a role for the NSL complex in promoting the transcription of piRNA precursors from telomeric piRNA clusters and in regulating Piwi levels in the Drosophila female germline.
Collapse
Affiliation(s)
- Shantanu S Iyer
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Yidan Sun
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Janine Seyfferth
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Vinitha Manjunath
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Maria Samata
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Anastasios Alexiadis
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Tanvi Kulkarni
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Noel Gutierrez
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Plamen Georgiev
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Maria Shvedunova
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| |
Collapse
|
6
|
Ho S, Rice NP, Yu T, Weng Z, Theurkauf WE. Aub, Vasa and Armi localization to phase separated nuage is dispensable for piRNA biogenesis and transposon silencing in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.549160. [PMID: 37546958 PMCID: PMC10402007 DOI: 10.1101/2023.07.25.549160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
From nematodes to placental mammals, key components of the germline transposon silencing piRNAs pathway localize to phase separated perinuclear granules. In Drosophila, the PIWI protein Aub, DEAD box protein Vasa and helicase Armi localize to nuage granules and are required for ping-pong piRNA amplification and phased piRNA processing. Drosophila piRNA mutants lead to genome instability and Chk2 kinase DNA damage signaling. By systematically analyzing piRNA pathway organization, small RNA production, and long RNA expression in single piRNA mutants and corresponding chk2/mnk double mutants, we show that Chk2 activation disrupts nuage localization of Aub and Vasa, and that the HP1 homolog Rhino, which drives piRNA precursor transcription, is required for Aub, Vasa, and Armi localization to nuage. However, these studies also show that ping-pong amplification and phased piRNA biogenesis are independent of nuage localization of Vasa, Aub and Armi. Dispersed cytoplasmic proteins thus appear to mediate these essential piRNA pathway functions.
Collapse
Affiliation(s)
- Samantha Ho
- Program in Molecular Medicine, UMass Chan Medical School, Worcester MA
| | - Nicholas P Rice
- Program in Molecular Medicine, UMass Chan Medical School, Worcester MA
| | - Tianxiong Yu
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester MA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester MA
| | | |
Collapse
|
7
|
Cao J, Yu T, Xu B, Hu Z, Zhang XO, Theurkauf W, Weng Z. Epigenetic and chromosomal features drive transposon insertion in Drosophila melanogaster. Nucleic Acids Res 2023; 51:2066-2086. [PMID: 36762470 PMCID: PMC10018349 DOI: 10.1093/nar/gkad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/12/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Transposons are mobile genetic elements prevalent in the genomes of most species. The distribution of transposons within a genome reflects the actions of two opposing processes: initial insertion site selection, and selective pressure from the host. By analyzing whole-genome sequencing data from transposon-activated Drosophila melanogaster, we identified 43 316 de novo and 237 germline insertions from four long-terminal-repeat (LTR) transposons, one LINE transposon (I-element), and one DNA transposon (P-element). We found that all transposon types favored insertion into promoters de novo, but otherwise displayed distinct insertion patterns. De novo and germline P-element insertions preferred replication origins, often landing in a narrow region around transcription start sites and in regions of high chromatin accessibility. De novo LTR transposon insertions preferred regions with high H3K36me3, promoters and exons of active genes; within genes, LTR insertion frequency correlated with gene expression. De novo I-element insertion density increased with distance from the centromere. Germline I-element and LTR transposon insertions were depleted in promoters and exons, suggesting strong selective pressure to remove transposons from functional elements. Transposon movement is associated with genome evolution and disease; therefore, our results can improve our understanding of genome and disease biology.
Collapse
Affiliation(s)
- Jichuan Cao
- The School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Tianxiong Yu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Bo Xu
- The School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhongren Hu
- The School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiao-ou Zhang
- The School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - William E Theurkauf
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
8
|
Wang X, Ramat A, Simonelig M, Liu MF. Emerging roles and functional mechanisms of PIWI-interacting RNAs. Nat Rev Mol Cell Biol 2023; 24:123-141. [PMID: 36104626 DOI: 10.1038/s41580-022-00528-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 02/02/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are a class of small non-coding RNAs that associate with proteins of the PIWI clade of the Argonaute family. First identified in animal germ line cells, piRNAs have essential roles in germ line development. The first function of PIWI-piRNA complexes to be described was the silencing of transposable elements, which is crucial for maintaining the integrity of the germ line genome. Later studies provided new insights into the functions of PIWI-piRNA complexes by demonstrating that they regulate protein-coding genes. Recent studies of piRNA biology, including in new model organisms such as golden hamsters, have deepened our understanding of both piRNA biogenesis and piRNA function. In this Review, we discuss the most recent advances in our understanding of piRNA biogenesis, the molecular mechanisms of piRNA function and the emerging roles of piRNAs in germ line development mainly in flies and mice, and in infertility, cancer and neurological diseases in humans.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Anne Ramat
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Martine Simonelig
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France.
| | - Mo-Fang Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. .,Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China. .,School of Life Science and Technology, Shanghai Tech University, Shanghai, China.
| |
Collapse
|
9
|
Makeyeva YV, Shirayama M, Mello CC. Cues from mRNA splicing prevent default Argonaute silencing in C. elegans. Dev Cell 2021; 56:2636-2648.e4. [PMID: 34547227 DOI: 10.1016/j.devcel.2021.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/28/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022]
Abstract
In animals, Argonaute small-RNA pathways scan germline transcripts to silence self-replicating genetic elements. However, little is known about how endogenous gene expression is recognized and licensed. Here, we show that the presence of introns and, by inference, the process of mRNA splicing prevents default Argonaute-mediated silencing in the C. elegans germline. The silencing of intronless genes is initiated independently of the piRNA pathway but nevertheless engages multiple components of the downstream amplification and maintenance mechanisms that mediate transgenerational silencing, including both nuclear and cytoplasmic members of the worm-specific Argonaute gene family (WAGOs). Small RNAs amplified from intronless mRNAs can trans-silence cognate intron-containing genes. Interestingly, a second, small RNA-independent cis-acting mode of silencing also acts on intronless mRNAs. Our findings suggest that cues put in place during mRNA splicing license germline gene expression and provide evidence for a splicing-dependent and dsRNA- and piRNA-independent mechanism that can program Argonaute silencing.
Collapse
Affiliation(s)
- Yekaterina V Makeyeva
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Masaki Shirayama
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Worcester, MA 01605, USA
| | - Craig C Mello
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Worcester, MA 01605, USA.
| |
Collapse
|