1
|
Liu M, Wang Y, Zhang Y, Hu D, Tang L, Zhou B, Yang L. Landscape of small nucleic acid therapeutics: moving from the bench to the clinic as next-generation medicines. Signal Transduct Target Ther 2025; 10:73. [PMID: 40059188 PMCID: PMC11891339 DOI: 10.1038/s41392-024-02112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/23/2024] [Accepted: 12/13/2024] [Indexed: 03/17/2025] Open
Abstract
The ability of small nucleic acids to modulate gene expression via a range of processes has been widely explored. Compared with conventional treatments, small nucleic acid therapeutics have the potential to achieve long-lasting or even curative effects via gene editing. As a result of recent technological advances, efficient small nucleic acid delivery for therapeutic and biomedical applications has been achieved, accelerating their clinical translation. Here, we review the increasing number of small nucleic acid therapeutic classes and the most common chemical modifications and delivery platforms. We also discuss the key advances in the design, development and therapeutic application of each delivery platform. Furthermore, this review presents comprehensive profiles of currently approved small nucleic acid drugs, including 11 antisense oligonucleotides (ASOs), 2 aptamers and 6 siRNA drugs, summarizing their modifications, disease-specific mechanisms of action and delivery strategies. Other candidates whose clinical trial status has been recorded and updated are also discussed. We also consider strategic issues such as important safety considerations, novel vectors and hurdles for translating academic breakthroughs to the clinic. Small nucleic acid therapeutics have produced favorable results in clinical trials and have the potential to address previously "undruggable" targets, suggesting that they could be useful for guiding the development of additional clinical candidates.
Collapse
Affiliation(s)
- Mohan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yusi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yibing Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Die Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bailing Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
He L, Wu X, Wu R, Guo P, He W, Sun W, Chen H. Seminal plasma piRNA array analysis and identification of possible biomarker piRNAs for the diagnosis of asthenozoospermia. Exp Ther Med 2022; 23:347. [PMID: 35493429 PMCID: PMC9019763 DOI: 10.3892/etm.2022.11275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/08/2022] [Indexed: 11/22/2022] Open
Abstract
Asthenozoospermia (AZS) is characterized by reduced sperm motility and its pathogenesis remains poorly understood. Piwi-interacting RNAs (piRNAs) have been indicated to serve important roles in spermatogenesis. However, little is known about the correlation of piRNA expression with AZS. In the present study, small RNA sequencing (small RNA-seq) was performed on sperm samples from AZS patients and fertile controls. Reverse transcription-quantitative (RT-q) PCR was used to validate the small RNA-seq results. Bioinformatics analyses were performed to predict the functions of differentially expressed piRNAs (DEpiRNAs). Logistic regression models were constructed and receiver operating characteristic curve (ROC) analysis was used to evaluate their diagnostic performance. A total of 114 upregulated and 169 downregulated piRNAs were detected in AZS patients. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that the DEpiRNAs were mainly associated with transcription, signal transduction, cell differentiation, metal ion binding and focal adhesion. These results were verified by RT-qPCR analysis of eight selected piRNAs. The PCR results were consistent with the sequencing results in patients with AZS compared with controls in the first cohort. The expression of piR-hsa-32694, piR-hsa-26591, piR-hsa-18725 and piR-hsa-18586 was significantly upregulated in patients with AZS. The diagnostic power of the four piRNAs was further analyzed using ROC analysis; piR-hsa-26591 exhibited an area under the ROC curve (AUC) of 0.913 (95% CI: 0.795-0.994). Logistic regression modelling and subsequent ROC analysis indicated that the combination of the 4 piRNAs achieved good diagnostic efficacy (AUC: 0.935).
Collapse
Affiliation(s)
- Ling He
- Department of Geratology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xingwu Wu
- Assisted Reproductive Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Rongye Wu
- Department of Clinical Medicine, Jiangxi Health Vocational College, Nanchang, Jiangxi 330052, P.R. China
| | - Ping Guo
- Obstetrics and Gynecology, Yichun Maternal and Child Health Hospital, Jiangxi 336000, P.R. China
| | - Wenfeng He
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wanlei Sun
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - He Chen
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|