1
|
Almeida MV, Blumer M, Yuan CU, Sierra P, Price JL, Quah FX, Friman A, Dallaire A, Vernaz G, Putman ALK, Smith AM, Joyce DA, Butter F, Haase AD, Durbin R, Santos ME, Miska EA. Dynamic co-evolution of transposable elements and the piRNA pathway in African cichlid fishes. Genome Biol 2025; 26:14. [PMID: 39844208 PMCID: PMC11753138 DOI: 10.1186/s13059-025-03475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND East African cichlid fishes have diversified in an explosive fashion, but the (epi)genetic basis of the phenotypic diversity of these fishes remains largely unknown. Although transposable elements (TEs) have been associated with phenotypic variation in cichlids, little is known about their transcriptional activity and epigenetic silencing. We set out to bridge this gap and to understand the interactions between TEs and their cichlid hosts. RESULTS Here, we describe dynamic patterns of TE expression in African cichlid gonads and during early development. Orthology inference revealed strong conservation of TE silencing factors in cichlids, and an expansion of piwil1 genes in Lake Malawi cichlids, likely driven by PiggyBac TEs. The expanded piwil1 copies have signatures of positive selection and retain amino acid residues essential for catalytic activity. Furthermore, the gonads of African cichlids express a Piwi-interacting RNA (piRNA) pathway that targets TEs. We define the genomic sites of piRNA production in African cichlids and find divergence in closely related species, in line with fast evolution of piRNA-producing loci. CONCLUSIONS Our findings suggest dynamic co-evolution of TEs and host silencing pathways in the African cichlid radiations. We propose that this co-evolution has contributed to cichlid genomic diversity.
Collapse
Affiliation(s)
- Miguel Vasconcelos Almeida
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK.
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
| | - Moritz Blumer
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Chengwei Ulrika Yuan
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Pío Sierra
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Jonathan L Price
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Fu Xiang Quah
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Aleksandr Friman
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Biophysics Graduate Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, 20742, USA
| | - Alexandra Dallaire
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Comparative Fungal Biology, Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, TW9 3DS, UK
| | - Grégoire Vernaz
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- Present Address: Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, Basel, 4051, Switzerland
| | - Audrey L K Putman
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Alan M Smith
- School of Natural Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Domino A Joyce
- School of Natural Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Falk Butter
- Institute of Molecular Biology (IMB), Quantitative Proteomics, Ackermannweg 4, Mainz, 55128, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Südufer, Greifswald, 17493, Germany
| | - Astrid D Haase
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - M Emília Santos
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Eric A Miska
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK.
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
| |
Collapse
|
2
|
Jaszczak RG, Zussman JW, Wagner DE, Laird DJ. Comprehensive profiling of migratory primordial germ cells reveals niche-specific differences in non-canonical Wnt and Nodal-Lefty signaling in anterior vs posterior migrants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610420. [PMID: 39257761 PMCID: PMC11383659 DOI: 10.1101/2024.08.29.610420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Mammalian primordial germ cells (PGCs) migrate asynchronously through the embryonic hindgut and dorsal mesentery to reach the gonads. We previously found that interaction with different somatic niches regulates PGC proliferation along the migration route. To characterize transcriptional heterogeneity of migrating PGCs and their niches, we performed single-cell RNA sequencing of 13,262 mouse PGCs and 7,868 surrounding somatic cells during migration (E9.5, E10.5, E11.5) and in anterior versus posterior locations to enrich for leading and lagging migrants. Analysis of PGCs by position revealed dynamic gene expression changes between faster or earlier migrants in the anterior and slower or later migrants in the posterior at E9.5; these differences include migration-associated actin polymerization machinery and epigenetic reprogramming-associated genes. We furthermore identified changes in signaling with various somatic niches, notably strengthened interactions with hindgut epithelium via non-canonical WNT (ncWNT) in posterior PGCs compared to anterior. Reanalysis of a previously published dataset suggests that ncWNT signaling from the hindgut epithelium to early migratory PGCs is conserved in humans. Trajectory inference methods identified putative differentiation trajectories linking cell states across timepoints and from posterior to anterior in our mouse dataset. At E9.5, we mainly observed differences in cell adhesion and actin cytoskeletal dynamics between E9.5 posterior and anterior migrants. At E10.5, we observed divergent gene expression patterns between putative differentiation trajectories from posterior to anterior including Nodal signaling response genes Lefty1, Lefty2, and Pycr2 and reprogramming factors Dnmt1, Prc1, and Tet1. At E10.5, we experimentally validated anterior migrant-specific Lefty1/2 upregulation via whole-mount immunofluorescence staining for LEFTY1/2 proteins, suggesting that elevated autocrine Nodal signaling accompanies the late stages of PGC migration. Together, this positional and temporal atlas of mouse PGCs supports the idea that niche interactions along the migratory route elicit changes in proliferation, actin dynamics, pluripotency, and epigenetic reprogramming.
Collapse
Affiliation(s)
| | | | - Daniel E. Wagner
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| | - Diana J. Laird
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| |
Collapse
|
3
|
Almeida MV, Blumer M, Yuan CU, Sierra P, Price JL, Quah FX, Friman A, Dallaire A, Vernaz G, Putman ALK, Smith AM, Joyce DA, Butter F, Haase AD, Durbin R, Santos ME, Miska EA. Dynamic co-evolution of transposable elements and the piRNA pathway in African cichlid fishes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587621. [PMID: 38617250 PMCID: PMC11014572 DOI: 10.1101/2024.04.01.587621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
East African cichlid fishes have diversified in an explosive fashion, but the (epi)genetic basis of the phenotypic diversity of these fishes remains largely unknown. Although transposable elements (TEs) have been associated with phenotypic variation in cichlids, little is known about their transcriptional activity and epigenetic silencing. Here, we describe dynamic patterns of TE expression in African cichlid gonads and during early development. Orthology inference revealed an expansion of piwil1 genes in Lake Malawi cichlids, likely driven by PiggyBac TEs. The expanded piwil1 copies have signatures of positive selection and retain amino acid residues essential for catalytic activity. Furthermore, the gonads of African cichlids express a Piwi-interacting RNA (piRNA) pathway that target TEs. We define the genomic sites of piRNA production in African cichlids and find divergence in closely related species, in line with fast evolution of piRNA-producing loci. Our findings suggest dynamic co-evolution of TEs and host silencing pathways in the African cichlid radiations. We propose that this co-evolution has contributed to cichlid genomic diversity.
Collapse
Affiliation(s)
- Miguel Vasconcelos Almeida
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Moritz Blumer
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- These authors contributed equally
| | - Chengwei Ulrika Yuan
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- These authors contributed equally
| | - Pío Sierra
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Jonathan L. Price
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Fu Xiang Quah
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Aleksandr Friman
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Biophysics Graduate Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Alexandra Dallaire
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Comparative Fungal Biology, Royal Botanic Gardens Kew, Jodrell Laboratory, Richmond TW9 3DS, UK
| | - Grégoire Vernaz
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- Present address: Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, Basel, 4051, Switzerland
| | - Audrey L. K. Putman
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Alan M. Smith
- School of Natural Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Domino A. Joyce
- School of Natural Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Falk Butter
- Institute of Molecular Biology (IMB), Quantitative Proteomics, Ackermannweg 4, Mainz, 55128, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Südufer, Greifswald, 17493, Germany
| | - Astrid D. Haase
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - M. Emília Santos
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Eric A. Miska
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| |
Collapse
|
4
|
Cooke CB, Barrington C, Baillie-Benson P, Nichols J, Moris N. Gastruloid-derived primordial germ cell-like cells develop dynamically within integrated tissues. Development 2023; 150:dev201790. [PMID: 37526602 PMCID: PMC10508693 DOI: 10.1242/dev.201790] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Primordial germ cells (PGCs) are the early embryonic precursors of gametes - sperm and egg cells. PGC-like cells (PGCLCs) can currently be derived in vitro from pluripotent cells exposed to signalling cocktails and aggregated into large embryonic bodies, but these do not recapitulate the native embryonic environment during PGC formation. Here, we show that mouse gastruloids, a three-dimensional in vitro model of gastrulation, contain a population of gastruloid-derived PGCLCs (Gld-PGCLCs) that resemble early PGCs in vivo. Importantly, the conserved organisation of mouse gastruloids leads to coordinated spatial and temporal localisation of Gld-PGCLCs relative to surrounding somatic cells, even in the absence of specific exogenous PGC-specific signalling or extra-embryonic tissues. In gastruloids, self-organised interactions between cells and tissues, including the endodermal epithelium, enables the specification and subsequent maturation of a pool of Gld-PGCLCs. As such, mouse gastruloids represent a new source of PGCLCs in vitro and, owing to their inherent co-development, serve as a novel model to study the dynamics of PGC development within integrated tissue environments.
Collapse
Affiliation(s)
- Christopher B. Cooke
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Abcam, Discovery Drive, Cambridge Biomedical Campus, Cambridge CB2 0AX, UK
| | | | - Peter Baillie-Benson
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Wellcome Trust – MRC Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Jennifer Nichols
- Wellcome Trust – MRC Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Naomi Moris
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|