1
|
Gomez-Salinero JM, Redmond D, Rafii S. Microenvironmental determinants of endothelial cell heterogeneity. Nat Rev Mol Cell Biol 2025; 26:476-495. [PMID: 39875728 DOI: 10.1038/s41580-024-00825-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 01/30/2025]
Abstract
During development, endothelial cells (ECs) undergo an extraordinary specialization by which generic capillary microcirculatory networks spanning from arteries to veins transform into patterned organotypic zonated blood vessels. These capillary ECs become specialized to support the cellular and metabolic demands of each specific organ, including supplying tissue-specific angiocrine factors that orchestrate organ development, maintenance of organ-specific functions and regeneration of injured adult organs. Here, we illustrate the mechanisms by which microenvironmental signals emanating from non-vascular niche cells induce generic ECs to acquire specific inter-organ and intra-organ functional attributes. We describe how perivascular, parenchymal and immune cells dictate vascular heterogeneity and capillary zonation, and how this system is maintained through tissue-specific signalling activated by vasculogenic and angiogenic factors and deposition of matrix components. We also discuss how perturbation of organotypic vascular niche cues lead to erasure of EC signatures, contributing to the pathogenesis of disease processes. We also describe approaches that use reconstitution of tissue-specific signatures of ECs to promote regeneration of damaged organs.
Collapse
Affiliation(s)
- Jesus M Gomez-Salinero
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration and Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - David Redmond
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration and Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Shahin Rafii
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration and Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Li J, Wang H, Xia S. Hematopoietic stem and progenitor cells fine-tuning the "sweet" of trained immunity. J Leukoc Biol 2025; 117:qiaf043. [PMID: 40233187 DOI: 10.1093/jleuko/qiaf043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/19/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025] Open
Abstract
Recent studies have challenged the traditional view of innate immunity as nonspecific and transient by demonstrating that innate immune cells can develop immune memory in response to various activating factors, a phenomenon known as trained immunity. This process involves epigenetic modifications, such as changes in chromatin accessibility, and metabolic reprogramming, which can provide protection against unrelated pathogens but may also trigger immune-mediated damage. This review summarizes the current understanding of innate immune memory, with a particular focus on recent findings regarding the training of innate immune cells at the hematopoietic stem and progenitor cell stage. We present observations of trained immunity in innate immune cells, summarize key activating factors and underlying mechanisms, and propose potential host-directed immunotherapeutic strategies and preventive measures based on trained immunity. Our aim is to highlight the biological significance of trained immunity and its potential applications in enhancing long-term immunity, improving vaccine efficacy, and preventing immune-related diseases.
Collapse
Affiliation(s)
- Jiawei Li
- Department of Immunology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212000, China
| | - Hui Wang
- Department of Immunology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212000, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212000, China
| |
Collapse
|
3
|
Saloni, Sachan M, Rahul, Verma RS, Patel GK. SOXs: Master architects of development and versatile emulators of oncogenesis. Biochim Biophys Acta Rev Cancer 2025; 1880:189295. [PMID: 40058508 DOI: 10.1016/j.bbcan.2025.189295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Transcription factors regulate a variety of events and maintain cellular homeostasis. Several transcription factors involved in embryonic development, has been shown to be closely associated with carcinogenesis when deregulated. Sry-like high mobility group box (SOX) proteins are potential transcription factors which are evolutionarily conserved. They regulate downstream genes to determine cell fate, via various signaling pathways and cellular processes essential for tissue and organ development. Dysregulation of SOXs has been reported to promote or suppress tumorigenesis by modulating cellular reprogramming, growth, proliferation, angiogenesis, metastasis, apoptosis, immune modulation, lineage plasticity, maintenance of the stem cell pool, therapy resistance and cancer relapse. This review provides a crucial understanding of the molecular mechanism by which SOXs play multifaceted roles in embryonic development and carcinogenesis. It also highlights their potential in advancing therapeutic strategies aimed at targeting SOXs and their downstream effectors in various malignancies.
Collapse
Affiliation(s)
- Saloni
- Cancer and Stem Cell Laboratory, Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Rahul
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Rama Shanker Verma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - Girijesh Kumar Patel
- Cancer and Stem Cell Laboratory, Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| |
Collapse
|
4
|
Weijts B, Robin C. Capturing embryonic hematopoiesis in temporal and spatial dimensions. Exp Hematol 2024; 136:104257. [PMID: 38897373 DOI: 10.1016/j.exphem.2024.104257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Hematopoietic stem cells (HSCs) possess the ability to sustain the continuous production of all blood cell types throughout an organism's lifespan. Although primarily located in the bone marrow of adults, HSCs originate during embryonic development. Visualization of the birth of HSCs, their developmental trajectory, and the specific interactions with their successive niches have significantly contributed to our understanding of the biology and mechanics governing HSC formation and expansion. Intravital techniques applied to live embryos or non-fixed samples have remarkably provided invaluable insights into the cellular and anatomical origins of HSCs. These imaging technologies have also shed light on the dynamic interactions between HSCs and neighboring cell types within the surrounding microenvironment or niche, such as endothelial cells or macrophages. This review delves into the advancements made in understanding the origin, production, and cellular interactions of HSCs, particularly during the embryonic development of mice and zebrafish, focusing on studies employing (live) imaging analysis.
Collapse
Affiliation(s)
- Bart Weijts
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Catherine Robin
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Moll T, Farber SA. Zebrafish ApoB-Containing Lipoprotein Metabolism: A Closer Look. Arterioscler Thromb Vasc Biol 2024; 44:1053-1064. [PMID: 38482694 PMCID: PMC11042983 DOI: 10.1161/atvbaha.123.318287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Zebrafish have become a powerful model of mammalian lipoprotein metabolism and lipid cell biology. Most key proteins involved in lipid metabolism, including cholesteryl ester transfer protein, are conserved in zebrafish. Consequently, zebrafish exhibit a human-like lipoprotein profile. Zebrafish with mutations in genes linked to human metabolic diseases often mimic the human phenotype. Zebrafish larvae develop rapidly and externally around the maternally deposited yolk. Recent work revealed that any disturbance of lipoprotein formation leads to the accumulation of cytoplasmic lipid droplets and an opaque yolk, providing a visible phenotype to investigate disturbances of the lipoprotein pathway, already leading to discoveries in MTTP (microsomal triglyceride transfer protein) and ApoB (apolipoprotein B). By 5 days of development, the digestive system is functional, making it possible to study fluorescently labeled lipid uptake in the transparent larvae. These and other approaches enabled the first in vivo description of the STAB (stabilin) receptors, showing lipoprotein uptake in endothelial cells. Various zebrafish models have been developed to mimic human diseases by mutating genes known to influence lipoproteins (eg, ldlra, apoC2). This review aims to discuss the most recent research in the zebrafish ApoB-containing lipoprotein and lipid metabolism field. We also summarize new insights into lipid processing within the yolk cell and how changes in lipid flux alter yolk opacity. This curious new finding, coupled with the development of several techniques, can be deployed to identify new players in lipoprotein research directly relevant to human disease.
Collapse
|
6
|
Hu P, Du Y, Xu Y, Ye P, Xia J. The role of transcription factors in the pathogenesis and therapeutic targeting of vascular diseases. Front Cardiovasc Med 2024; 11:1384294. [PMID: 38745757 PMCID: PMC11091331 DOI: 10.3389/fcvm.2024.1384294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Transcription factors (TFs) constitute an essential component of epigenetic regulation. They contribute to the progression of vascular diseases by regulating epigenetic gene expression in several vascular diseases. Recently, numerous regulatory mechanisms related to vascular pathology, ranging from general TFs that are continuously activated to histiocyte-specific TFs that are activated under specific circumstances, have been studied. TFs participate in the progression of vascular-related diseases by epigenetically regulating vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs). The Krüppel-like family (KLF) TF family is widely recognized as the foremost regulator of vascular diseases. KLF11 prevents aneurysm progression by inhibiting the apoptosis of VSMCs and enhancing their contractile function. The presence of KLF4, another crucial member, suppresses the progression of atherosclerosis (AS) and pulmonary hypertension by attenuating the formation of VSMCs-derived foam cells, ameliorating endothelial dysfunction, and inducing vasodilatory effects. However, the mechanism underlying the regulation of the progression of vascular-related diseases by TFs has remained elusive. The present study categorized the TFs involved in vascular diseases and their regulatory mechanisms to shed light on the potential pathogenesis of vascular diseases, and provide novel insights into their diagnosis and treatment.
Collapse
Affiliation(s)
- Poyi Hu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Du
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Xu
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Ye
- Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Aurigemma I, Lanzetta O, Cirino A, Allegretti S, Lania G, Ferrentino R, Poondi Krishnan V, Angelini C, Illingworth E, Baldini A. Endothelial gene regulatory elements associated with cardiopharyngeal lineage differentiation. Commun Biol 2024; 7:351. [PMID: 38514806 PMCID: PMC10957928 DOI: 10.1038/s42003-024-06017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Endothelial cells (EC) differentiate from multiple sources, including the cardiopharyngeal mesoderm, which gives rise also to cardiac and branchiomeric muscles. The enhancers activated during endothelial differentiation within the cardiopharyngeal mesoderm are not completely known. Here, we use a cardiogenic mesoderm differentiation model that activates an endothelial transcription program to identify endothelial regulatory elements activated in early cardiogenic mesoderm. Integrating chromatin remodeling and gene expression data with available single-cell RNA-seq data from mouse embryos, we identify 101 putative regulatory elements of EC genes. We then apply a machine-learning strategy, trained on validated enhancers, to predict enhancers. Using this computational assay, we determine that 50% of these sequences are likely enhancers, some of which are already reported. We also identify a smaller set of regulatory elements of well-known EC genes and validate them using genetic and epigenetic perturbation. Finally, we integrate multiple data sources and computational tools to search for transcriptional factor binding motifs. In conclusion, we show EC regulatory sequences with a high likelihood to be enhancers, and we validate a subset of them using computational and cell culture models. Motif analyses show that the core EC transcription factors GATA/ETS/FOS is a likely driver of EC regulation in cardiopharyngeal mesoderm.
Collapse
Affiliation(s)
- Ilaria Aurigemma
- PhD program in Molecular Medicine and Medical Biotechnology, University Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Olga Lanzetta
- Institute of Genetics and Biophysics, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Andrea Cirino
- Institute of Genetics and Biophysics, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Sara Allegretti
- PhD program in Molecular Medicine and Medical Biotechnology, University Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Gabriella Lania
- Institute of Genetics and Biophysics, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Rosa Ferrentino
- Institute of Genetics and Biophysics, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Varsha Poondi Krishnan
- Institute of Genetics and Biophysics, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Claudia Angelini
- Istituto Applicazioni del Calcolo, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Elizabeth Illingworth
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Antonio Baldini
- PhD program in Molecular Medicine and Medical Biotechnology, University Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
8
|
Kim JW, Fedorov EA, Zon LI. G-CSF-induced hematopoietic stem cell mobilization from the embryonic hematopoietic niche does not require neutrophils and macrophages. Exp Hematol 2024; 131:104147. [PMID: 38160994 PMCID: PMC10939783 DOI: 10.1016/j.exphem.2023.104147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Hematopoietic stem cell transplantation requires the collection of hematopoietic cells from patients or stem cell donors. Granulocyte colony-stimulating factor (G-CSF) is widely used in the clinic to mobilize hematopoietic stem and progenitor cells (HSPCs) from the adult bone marrow niche into circulation, allowing a collection of HSPCs from the blood. The mechanism by which G-CSF acts to mobilize HSPCs is unclear, with some studies showing a direct stimulation of stem cells and others suggesting that myeloid cells are required. In this study, we developed a heat-inducible G-CSF transgenic zebrafish line to study HSPC mobilization in vivo. Live imaging of HSPCs after G-CSF induction revealed an increase in circulating HSPCs, demonstrating a successful HSPC mobilization. These mobilized HSPCs went on to prematurely colonize the kidney marrow, the adult zebrafish hematopoietic niche. We eliminated neutrophils or macrophages using a nitroreductase-based cell ablation system and found that G-CSF still mobilizes HSPCs from the niche. Our findings indicate that neutrophils and macrophages are not required for G-CSF-induced HSPC mobilization from the embryonic hematopoietic niche.
Collapse
Affiliation(s)
- Ji Wook Kim
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - Evan A Fedorov
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA.
| |
Collapse
|
9
|
Fischer A, Alsina-Sanchis E. Disturbed endothelial cell signaling in tumor progression and therapy resistance. Curr Opin Cell Biol 2024; 86:102287. [PMID: 38029706 DOI: 10.1016/j.ceb.2023.102287] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Growth of new blood vessels is considered requisite to cancer progression. Recent findings revealed that in addition to inducing angiogenesis, tumor-derived factors alter endothelial cell gene transcription within the tumor mass but also systemically throughout the body. This subsequently contributes to immunosuppression, altered metabolism, therapy resistance and metastasis. Clinical studies demonstrated that targeting the endothelium can increase the success rate of immunotherapy. Single-cell technologies revealed remarkable organ-specific endothelial heterogeneity that becomes altered by the presence of a tumor. In metastases, endothelial transcription differs remarkably between newly formed and co-opted vessels which may provide a basis for developing new therapies to target endothelial cells and overcome therapy resistance more effectively. This review addresses how cancers impact the endothelium to facilitate tumor progression.
Collapse
Affiliation(s)
- Andreas Fischer
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen University, 37075 Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany.
| | - Elisenda Alsina-Sanchis
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen University, 37075 Göttingen, Germany
| |
Collapse
|