1
|
Zhang B, Fan Z, Liu X, Wu Y, Cheng L, Wang L, Liu H. Bisphenol AF induces lipid metabolism disorders, oxidative stress and upregulation of heat shock protein 70 in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2025; 293:110164. [PMID: 40020955 DOI: 10.1016/j.cbpc.2025.110164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Bisphenol AF (BPAF) is a widespread endocrine disruptor in the environment, and the use of BPAF has been strongly associated with the development of several diseases. In this study, we investigated the effects of BPAF on growth, development, oxidative stress and lipid metabolism in zebrafish. We chose the concentrations based on the measured LC50 at 96 h post-fertilization (96 hpf), and the zebrafish embryos were exposed to three different concentrations (0.125, 0.5 and 2 μmol/L). The findings indicated that BPAF exposure in zebrafish leaded to alterations in heart rate, body length and hatching rate, as well as an accumulation of red blood cells in the heart. Additionally, BPAF exposure resulted in increased levels of neutrophils, reactive oxygen species (ROS) and malondialdehyde (MDA), and decreased activity of antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)), thus disturbing the balance between oxidative and antioxidative systems. BPAF promoted fatty acid catabolism and inhibited fatty acid synthesis, ultimately leading to a reduction in fatty acid content. Mechanistically, RNA-seq analysis and RT-qPCR revealed a significant upregulation of heat shock protein 70 (hsp70) after BPAF exposure. Inhibition of hsp70 with VER-155008 ameliorated BPAF-induced oxidative stress. These data provided a novel approach to investigate BPAF-induced oxidative stress and suggested that regulation of hsp70 is a crucial target for alleviating this process.
Collapse
Affiliation(s)
- Bingya Zhang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, PR China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu 233030, PR China; Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu 233030, PR China
| | - Zhonghua Fan
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, PR China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu 233030, PR China; Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu 233030, PR China
| | - Xuan Liu
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Yuanyuan Wu
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Lin Cheng
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Li Wang
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China.
| | - Hui Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, PR China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu 233030, PR China; Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu 233030, PR China.
| |
Collapse
|
3
|
Kose S, Yoshioka S, Ogawa Y, Watanabe A, Imamoto N. The interaction between the import carrier Hikeshi and HSP70 is modulated by heat, facilitating the nuclear import of HSP70 under heat stress conditions. Genes Cells 2024; 29:782-791. [PMID: 38987995 DOI: 10.1111/gtc.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Heat stress strongly triggers the nuclear localization of the molecular chaperone HSP70. Hikeshi functions as a unique nuclear import carrier of HSP70. However, how the nuclear import of HSP70 is activated in response to heat stress remains unclear. Here, we investigated the effects of heat on the nuclear import of HSP70. In vitro transport assays revealed that pretreatment of the test samples with heat facilitated the nuclear import of HSP70. Furthermore, binding of Hikeshi to HSP70 increased when temperatures rose. These results indicated that heat is one of the factors that activates the nuclear import of HSP70. Previous studies showed that the F97A mutation in Hikeshi in an extended loop induced an opening in the hydrophobic pocket and facilitated the translocation of Hikeshi through the nuclear pore complex. We found that nuclear accumulation of HSP70 occurred at a lower temperature in cells expressing the Hikeshi-F97A mutant than in cells expressing wild-type Hikeshi. Collectively, our results show that the movement of the extended loop may play an important role in the interaction of Hikeshi with both FG (phenylalanine-glycine)-nucleoporins and HSP70 in a temperature-dependent manner, resulting in the activation of nuclear import of HSP70 in response to heat stress.
Collapse
Affiliation(s)
- Shingo Kose
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Sakie Yoshioka
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Yutaka Ogawa
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Ai Watanabe
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Naoko Imamoto
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
- Jikei University of Health Care Sciences, Graduate School of Medical Safety Management, Osaka, Japan
| |
Collapse
|
4
|
Dai W, Liu Z, Yan M, Nian X, Hong F, Zhou Z, Wang C, Fu X, Li X, Jiang M, Zhu Y, Huang Q, Lu X, Hou L, Yan N, Wang Q, Hu J, Mo W, Zhang X, Zhang L. Nucleoporin Seh1 controls murine neocortical development via transcriptional repression of p21 in neural stem cells. Dev Cell 2024; 59:482-495.e6. [PMID: 38272027 DOI: 10.1016/j.devcel.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/21/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024]
Abstract
Mutations or dysregulation of nucleoporins (Nups) are strongly associated with neural developmental diseases, yet the underlying mechanisms remain poorly understood. Here, we show that depletion of Nup Seh1 in radial glial progenitors results in defective neural progenitor proliferation and differentiation that ultimately manifests in impaired neurogenesis and microcephaly. This loss of stem cell proliferation is not associated with defects in the nucleocytoplasmic transport. Rather, transcriptome analysis showed that ablation of Seh1 in neural stem cells derepresses the expression of p21, and knockdown of p21 partially restored self-renewal capacity. Mechanistically, Seh1 cooperates with the NuRD transcription repressor complex at the nuclear periphery to regulate p21 expression. Together, these findings identified that Nups regulate brain development by exerting a chromatin-associated role and affecting neural stem cell proliferation.
Collapse
Affiliation(s)
- Wenxiu Dai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Zhixiong Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China; Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai 519031, China
| | - Minbiao Yan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Ximing Nian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Fan Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Zhihao Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Chaomeng Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Xing Fu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Xuewen Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Mengyun Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Yanqin Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Qiuying Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiaoyun Lu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Lichao Hou
- Department of Anesthesiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Ning Yan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qin Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jin Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Wei Mo
- Sir Run Run Shaw Hospital, Department of Immunology, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Hangzhou 311121, China
| | - Xueqin Zhang
- Department of Gynaecology and Obstetrics, Women and Children's Hospital Affiliated to Xiamen University, Xiamen University, Xiamen 361102, Fujian, China
| | - Liang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China; Department of Gynaecology and Obstetrics, Women and Children's Hospital Affiliated to Xiamen University, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|