1
|
Vendruscolo M. The thermodynamic hypothesis of protein aggregation. Mol Aspects Med 2025; 103:101364. [PMID: 40319523 DOI: 10.1016/j.mam.2025.101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/30/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025]
Abstract
Protein misfolding and aggregation drive some of the most prevalent and lethal disorders of our time, including Alzheimer's and Parkinson's diseases, now affecting tens of millions of people worldwide. The complexity of these diseases, which are often multifactorial and related to age and lifestyle, has made it challenging to identify the causes of the accumulation of aberrant protein deposits. An insight into the origins of these deposits comes from reports of a widespread presence of protein aggregates even under normal cellular conditions. This observation is best accounted for by the thermodynamic hypothesis of protein aggregation. According to this hypothesis, many proteins are expressed at levels close to their supersaturation limits, so that their native states are metastable against aggregation. Here we integrate the evidence behind this hypothesis and outline actionable therapeutic strategies that could halt protein aggregation at its source.
Collapse
Affiliation(s)
- Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| |
Collapse
|
2
|
Saad S, Swigut T, Tabatabaee S, Lalgudi P, Jarosz DF, Wysocka J. DNA binding and mitotic phosphorylation protect polyglutamine proteins from assembly formation. Cell 2025; 188:2974-2991.e20. [PMID: 40239647 DOI: 10.1016/j.cell.2025.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/20/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025]
Abstract
Polyglutamine (polyQ) expansion is associated with pathogenic protein aggregation in neurodegenerative disorders. However, long polyQ tracts are also found in many transcription factors (TFs), such as FOXP2, a TF implicated in human speech. Here, we explore how FOXP2 and other glutamine-rich TFs avoid unscheduled assembly. Throughout interphase, DNA binding, irrespective of sequence specificity, has a solubilizing effect. During mitosis, multiple phosphorylation events promote FOXP2's eviction from chromatin and supplant the solubilizing function of DNA. Further, human-specific amino acid substitutions linked to the evolution of speech map to a mitotic phospho-patch, the "EVO patch," and reduce the propensity of the human FOXP2 to assemble. Fusing the pathogenic form of Huntingtin to either a DNA-binding domain, a phosphomimetic variant of this EVO patch, or a negatively charged peptide is sufficient to diminish assembly formation, suggesting that hijacking mechanisms governing solubility of glutamine-rich TFs may offer new strategies for treatment of polyQ expansion diseases.
Collapse
Affiliation(s)
- Shady Saad
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Saman Tabatabaee
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pranav Lalgudi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Biga PR, Duan JE, Young TE, Marks JR, Bronikowski A, Decena LP, Randolph EC, Pavuluri AG, Li G, Fang Y, Wilkinson GS, Singh G, Nigrin NT, Larschan EN, Lonski AJ, Riddle NC. Hallmarks of aging: A user's guide for comparative biologists. Ageing Res Rev 2025; 104:102616. [PMID: 39643212 DOI: 10.1016/j.arr.2024.102616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Since the first description of a set of characteristics of aging as so-called hallmarks or pillars in 2013/2014, these characteristics have served as guideposts for the research in aging biology. They have been examined in a range of contexts, across tissues, in response to disease conditions or environmental factors, and served as a benchmark for various anti-aging interventions. While the hallmarks of aging were intended to capture generalizable characteristics of aging, they are derived mostly from studies of rodents and humans. Comparative studies of aging including species from across the animal tree of life have great promise to reveal new insights into the mechanistic foundations of aging, as there is a great diversity in lifespan and age-associated physiological changes. However, it is unclear how well the defined hallmarks of aging apply across diverse species. Here, we review each of the twelve hallmarks of aging defined by Lopez-Otin in 2023 with respect to the availability of data from diverse species. We evaluate the current methods used to assess these hallmarks for their potential to be adapted for comparative studies. Not unexpectedly, we find that the data supporting the described hallmarks of aging are restricted mostly to humans and a few model systems and that no data are available for many animal clades. Similarly, not all hallmarks can be easily assessed in diverse species. However, for at least half of the hallmarks, there are methods available today that can be employed to fill this gap in knowledge, suggesting that these studies can be prioritized while methods are developed for comparative study of the remaining hallmarks.
Collapse
Affiliation(s)
- Peggy R Biga
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jingyue E Duan
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Tristan E Young
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jamie R Marks
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Anne Bronikowski
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Louis P Decena
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Eric C Randolph
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ananya G Pavuluri
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Guangsheng Li
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Yifei Fang
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | | | - Gunjan Singh
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Nathan T Nigrin
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Erica N Larschan
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Andrew J Lonski
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Nicole C Riddle
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
4
|
Xu W, Zhao Z, Su M, Jain AD, Lloyd HC, Feng EY, Cox N, Woo CM. Genesis and regulation of C-terminal cyclic imides from protein damage. Proc Natl Acad Sci U S A 2025; 122:e2415976121. [PMID: 39793072 PMCID: PMC11725857 DOI: 10.1073/pnas.2415976121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/12/2024] [Indexed: 01/12/2025] Open
Abstract
C-Terminal cyclic imides are posttranslational modifications that can arise from spontaneous intramolecular cleavage of asparagine or glutamine residues resulting in a form of irreversible protein damage. These protein damage events are recognized and removed by the E3 ligase substrate adapter cereblon (CRBN), indicating that these aging-related modifications may require cellular quality control mechanisms to prevent deleterious effects. However, the factors that determine protein or peptide susceptibility to C-terminal cyclic imide formation or their effect on protein stability have not been explored in detail. Here, we characterize the primary and secondary structures of peptides and proteins that promote intrinsic formation of C-terminal cyclic imides in comparison to deamidation, a related form of protein damage. Extrinsic effects from solution properties and stressors on the cellular proteome additionally promote C-terminal cyclic imide formation on proteins like glutathione synthetase that are susceptible to aggregation if the protein damage products are not removed by CRBN. This systematic investigation provides insight into the regions of the proteome that are prone to these unexpectedly frequent modifications, the effects of this form of protein damage on protein stability, and the biological role of CRBN.
Collapse
Affiliation(s)
- Wenqing Xu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Zhenguang Zhao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Matthew Su
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | | | - Hannah C. Lloyd
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Ethan Yang Feng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Nick Cox
- Novo Nordisk R&D US,Lexington, MA02421
| | - Christina M. Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| |
Collapse
|
5
|
Lord S, Johnston H, Samant R, Lai Y. Ubiquitylomics: An Emerging Approach for Profiling Protein Ubiquitylation in Skeletal Muscle. J Cachexia Sarcopenia Muscle 2024; 15:2281-2294. [PMID: 39279720 PMCID: PMC11634490 DOI: 10.1002/jcsm.13601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Skeletal muscle is a highly adaptable tissue, finely tuned by various physiological and pathological factors. Whilst the pivotal role of skeletal muscle in overall health is widely acknowledged, unravelling the underlying molecular mechanisms poses ongoing challenges. Protein ubiquitylation, a crucial post-translational modification, is involved in regulating most biological processes. This widespread impact is achieved through a diverse set of enzymes capable of generating structurally and functionally distinct ubiquitin modifications on proteins. The complexity of protein ubiquitylation has presented significant challenges in not only identifying ubiquitylated proteins but also characterising their functional significance. Mass spectrometry enables in-depth analysis of proteins and their post-translational modification status, offering a powerful tool for studying protein ubiquitylation and its biological diversity: an approach termed ubiquitylomics. Ubiquitylomics has been employed to tackle different perspectives of ubiquitylation, including but not limited to global quantification of substrates and ubiquitin linkages, ubiquitin site recognition and crosstalk with other post-translational modifications. As the field of mass spectrometry continues to evolve, the usage of ubiquitylomics has unravelled novel insights into the regulatory mechanisms of protein ubiquitylation governing biology. However, ubiquitylomics research has predominantly been conducted in cellular models, limiting our understanding of ubiquitin signalling events driving skeletal muscle biology. By integrating the intricate landscape of protein ubiquitylation with dynamic shifts in muscle physiology, ubiquitylomics promises to not only deepen our understanding of skeletal muscle biology but also lay the foundation for developing transformative muscle-related therapeutics. This review aims to articulate how ubiquitylomics can be utilised by researchers to address different aspects of ubiquitylation signalling in skeletal muscle. We explore methods used in ubiquitylomics experiments, highlight relevant literature employing ubiquitylomics in the context of skeletal muscle and outline considerations for experimental design.
Collapse
Affiliation(s)
- Samuel O. Lord
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
| | | | | | - Yu‐Chiang Lai
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing ResearchUniversity of BirminghamBirminghamUK
- NIHR Birmingham Biomedical Research Centre Sarcopenia and MultimorbidityUniversity of BirminghamBirminghamUK
| |
Collapse
|
6
|
Solyga M, Majumdar A, Besse F. Regulating translation in aging: from global to gene-specific mechanisms. EMBO Rep 2024; 25:5265-5276. [PMID: 39562712 PMCID: PMC11624266 DOI: 10.1038/s44319-024-00315-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024] Open
Abstract
Aging is characterized by a decline in various biological functions that is associated with changes in gene expression programs. Recent transcriptome-wide integrative studies in diverse organisms and tissues have revealed a gradual uncoupling between RNA and protein levels with aging, which highlights the importance of post-transcriptional regulatory processes. Here, we provide an overview of multi-omics analyses that show the progressive uncorrelation of transcriptomes and proteomes during the course of healthy aging. We then describe the molecular changes leading to global downregulation of protein synthesis with age and review recent work dissecting the mechanisms involved in gene-specific translational regulation in complementary model organisms. These mechanisms include the recognition of regulated mRNAs by trans-acting factors such as miRNA and RNA-binding proteins, the condensation of mRNAs into repressive cytoplasmic RNP granules, and the pausing of ribosomes at specific residues. Lastly, we mention future challenges of this emerging field, possible buffering functions as well as potential links with disease.
Collapse
Affiliation(s)
- Mathilde Solyga
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Amitabha Majumdar
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, Maharashtra, India
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
7
|
Hetz C, Dillin A. Central role of the ER proteostasis network in healthy aging. Trends Cell Biol 2024:S0962-8924(24)00209-5. [PMID: 39547881 DOI: 10.1016/j.tcb.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
Aging trajectories vary among individuals, characterized by progressive functional decline, often leading to disease states. One of the central hallmarks of aging is the deterioration of proteostasis, where the function of the endoplasmic reticulum (ER) is dramatically affected. ER stress is monitored and adjusted by the unfolded protein response (UPR); a signaling pathway that mediates adaptive processes to restore proteostasis. Studies in multiple model organisms (yeast, worms, flies, and mice) in addition to human tissue indicates that adaptive UPR signaling contributes to healthy aging. Strategies to improve ER proteostasis using small molecules and gene therapy reduce the decline of organ function during normal aging in mammals. This article reviews recent advances in understanding the significance of the ER proteostasis network to normal aging and its relationship with other hallmarks of aging such as senescence.
Collapse
Affiliation(s)
- Claudio Hetz
- The Buck Institute for Research in Aging, Novato, CA 94945, USA; Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile.
| | - Andrew Dillin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
8
|
Bergman M, Goshtchevsky U, Atlan T, Astre G, Halabi R, El H, Moses E, Lemus AJJ, Benayoun BA, Tzfati Y, Ben-Ami I, Harel I. The cGAS-STING pathway is an in vivo modifier of genomic instability syndromes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618655. [PMID: 39464159 PMCID: PMC11508313 DOI: 10.1101/2024.10.16.618655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Mutations in genes involved in DNA damage repair (DDR) often lead to premature aging syndromes. While recent evidence suggests that inflammation, alongside mutation accumulation and cell death, may drive disease phenotypes, its precise contribution to in vivo pathophysiology remains unclear. Here, by modeling Ataxia Telangiectasia (A-T) and Bloom Syndrome in the African turquoise killifish ( N. furzeri ), we replicate key phenotypes of DDR syndromes, including infertility, cytoplasmic DNA fragments, and reduced lifespan. The link between DDR defects and inflammation is attributed to the activation of the cGAS-STING pathway and interferon signaling by cytoplasmic DNA. Accordingly, mutating cGAS partially rescues germline defects and senescence in A-T fish. Double mutants also display reversal of telomere abnormalities and suppression of transposable elements, underscoring cGAS's non-canonical role as a DDR inhibitor. Our findings emphasize the role of interferon signaling in A-T pathology and identify the cGAS-STING pathway as a potential therapeutic target for genomic instability syndromes.
Collapse
|
9
|
Kitazawa R, Haraguchi R, Murata Y, Takaoka Y, Kitazawa S. CpG Methylation of Receptor Activator NF-κB (RANK) Gene Promoter Region Delineates Senescence-Related Decrease of RANK Gene Expression. Acta Histochem Cytochem 2024; 57:137-147. [PMID: 39228907 PMCID: PMC11367149 DOI: 10.1267/ahc.24-00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
While the rapid decrease in estrogen is well known as the main cause of postmenopausal osteoporosis in women, the precise pathogenesis of senile osteoporosis in the elderly regardless of gender is largely unknown. The age-related epigenetic regulation of receptor activator NF-κB (RANK) gene expression was investigated with the use of a high-passaged mouse osteoclast progenitor cell line, RAW264.7, as an in vitro model of aging. In the RAW264.7 cells after repeated passages, receptor RANK expression was downregulated, resulting in decreased soluble RANK ligand (sRANKL)-induced osteoclastogenesis, expression of tartrate-resistant acid phosphatase-5b (TRAcP) and cathepsin K (CTSK). Methylation-specific PCR and bisulfite mapping revealed hypermethylation of CpG-loci located in the RANK gene promoter in multiple-passaged cells. ICON probe-mediated in situ assessment of methylated-cytosine at the CpG loci revealed an increase in the percentage of methylated RAW264.7 cells in the RANK gene in a passage-dependent manner. Conversely, upon treatment with demethylating agent 5-aza-2-deoxycytidine (5-aza-dC), high-passaged RAW264.7 cells displayed restored expression of the RANK gene, osteoclastogenesis, TRAcP and CTSK. Ex vivo cultures of splenic macrophages from young (10.5 W) and aged (12 M) mice also showed that CpG methylation was predominant in the aged animals, resulting in reduced RANK expression and osteoclastogenesis. Reduced RANK expression by age-related accumulation of DNA methylation, albeit in a limited population of osteoclast precursor cells, might be, at least in part, indicative of low-turnover bone characteristic of senile osteoporosis.
Collapse
Affiliation(s)
- Riko Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- Division of Diagnostic Pathology, Ehime University Hospital, Toon, Ehime, Japan
| | - Ryuma Haraguchi
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Yuki Murata
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Yuki Takaoka
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Sohei Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|