1
|
Abstract
11-beta-hydroxysteroid dehydrogenases (11β-HSDs) catalyse the conversion of active 11-hydroxy glucocorticoids (cortisol, corticosterone) and their inert 11-keto forms (cortisone, 11-dehydrocorticosterone). They were first reported in the body and brain 70 years ago, but only recently have they become of interest. 11β-HSD2 is a dehydrogenase, potently inactivating glucocorticoids. In the kidney, 11β-HSD2 generates the aldosterone-specificity of intrinsically non-selective mineralocorticoid receptors. 11β-HSD2 also protects the developing foetal brain and body from premature glucocorticoid exposure, which otherwise engenders the programming of neuropsychiatric and cardio-metabolic disease risks. In the adult CNS, 11β-HSD2 is confined to a part of the brain stem where it generates aldosterone-specific central control of salt appetite and perhaps blood pressure. 11β-HSD1 is a reductase, amplifying active glucocorticoid levels within brain cells, notably in the cortex, hippocampus and amygdala, paralleling its metabolic functions in peripheral tissues. 11β-HSD1 is elevated in the ageing rodent and, less certainly, human forebrain. Transgenic models show this rise contributes to age-related cognitive decline, at least in mice. 11β-HSD1 inhibition robustly improves memory in healthy and pathological ageing rodent models and is showing initial promising results in phase II studies of healthy elderly people. Larger trials are needed to confirm and clarify the magnitude of effect and define target populations. The next decade will be crucial in determining how this tale ends - in new treatments or disappointment.
Collapse
Affiliation(s)
- Jonathan Seckl
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Davidson CT, Miller E, Muir M, Dawson JC, Lee M, Aitken S, Serrels A, Webster SP, Homer NZM, Andrew R, Brunton VG, Hadoke PWF, Walker BR. 11β-HSD1 inhibition does not affect murine tumour angiogenesis but may exert a selective effect on tumour growth by modulating inflammation and fibrosis. PLoS One 2023; 18:e0255709. [PMID: 36940215 PMCID: PMC10027213 DOI: 10.1371/journal.pone.0255709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/05/2022] [Indexed: 03/21/2023] Open
Abstract
Glucocorticoids inhibit angiogenesis by activating the glucocorticoid receptor. Inhibition of the glucocorticoid-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) reduces tissue-specific glucocorticoid action and promotes angiogenesis in murine models of myocardial infarction. Angiogenesis is important in the growth of some solid tumours. This study used murine models of squamous cell carcinoma (SCC) and pancreatic ductal adenocarcinoma (PDAC) to test the hypothesis that 11β-HSD1 inhibition promotes angiogenesis and subsequent tumour growth. SCC or PDAC cells were injected into female FVB/N or C57BL6/J mice fed either standard diet, or diet containing the 11β-HSD1 inhibitor UE2316. SCC tumours grew more rapidly in UE2316-treated mice, reaching a larger (P<0.01) final volume (0.158 ± 0.037 cm3) than in control mice (0.051 ± 0.007 cm3). However, PDAC tumour growth was unaffected. Immunofluorescent analysis of SCC tumours did not show differences in vessel density (CD31/alpha-smooth muscle actin) or cell proliferation (Ki67) after 11β-HSD1 inhibition, and immunohistochemistry of SCC tumours did not show changes in inflammatory cell (CD3- or F4/80-positive) infiltration. In culture, the growth/viability (assessed by live cell imaging) of SCC cells was not affected by UE2316 or corticosterone. Second Harmonic Generation microscopy showed that UE2316 reduced Type I collagen (P<0.001), whilst RNA-sequencing revealed that multiple factors involved in the innate immune/inflammatory response were reduced in UE2316-treated SCC tumours. 11β-HSD1 inhibition increases SCC tumour growth, likely via suppression of inflammatory/immune cell signalling and extracellular matrix deposition, but does not promote tumour angiogenesis or growth of all solid tumours.
Collapse
Affiliation(s)
- Callam T. Davidson
- BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Eileen Miller
- BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Morwenna Muir
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - John C. Dawson
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Martin Lee
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Stuart Aitken
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Alan Serrels
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Scott P. Webster
- BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Natalie Z. M. Homer
- BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Mass Spectrometry Core, Clinical Research Facility, University of Edinburgh, Edinburgh, United Kingdom
| | - Ruth Andrew
- BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Valerie G. Brunton
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Patrick W. F. Hadoke
- BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Brian R. Walker
- BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Institute of Genetic Medicine, Newcastle University, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|