1
|
Mianesaz H, Ghalamkari S, Abbasi F, Razzaghy-Azar M, Sayarifard F, Vakili R, Sedghi M, Noroozi Asl S, Hosseini S, Amoli MM, Yaghootkar H. Genetic variant profiling of neonatal diabetes mellitus in Iranian patients: Unveiling 58 distinct variants in 14 genes. J Diabetes Investig 2024; 15:1390-1402. [PMID: 38970407 PMCID: PMC11442839 DOI: 10.1111/jdi.14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/11/2024] [Accepted: 06/04/2024] [Indexed: 07/08/2024] Open
Abstract
INTRODUCTION Neonatal diabetes mellitus (NDM) is a rare non-immunological monogenic disorder characterized by hyperglycemic conditions primarily occurring within the first 6 months of life. The majority of cases are attributed to pathogenic variants in genes affecting beta-cell survival, insulin regulation, and secretion. This study aims to investigate the genetic landscape of NDM in Iran. METHODS We recruited a total of 135 patients who were initially diagnosed with diabetes at <12 months of age in Iran and referred to pediatric endocrinology clinics across the country. These patients underwent genetic diagnostic tests conducted by the Exeter Molecular Genetics Laboratory in the UK. The pathogenic variants identified were sorted and described based on type, pathogenicity (according to ACMG/AMP criteria), novelty, and the affected protein domain. RESULTS Genetic defects were identified in 93 probands, presenting various pathogenic abnormalities associated with NDM and its associated syndromes. 76% of the patients were born as a result of consanguineous marriage, and a familial history of diabetes was found in 43% of the cases. A total of 58 distinct variants in 14 different genes were discovered, including 20 variants reported for the first time. Causative variants were most frequently identified in EIF2AK3, KCNJ11, and ABCC8, respectively. Notably, EIF2AK3 and ABCC8 exhibited the highest number of novel variants. DISCUSSION These findings provide valuable insights into the genetic landscape of NDM in the Iranian population and contribute to the knowledge of novel pathogenic variants within known causative genes.
Collapse
Affiliation(s)
- Hamidreza Mianesaz
- Department of Human Genetics, Medical School, University of Debrecen, Debrecen, Hungary
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Safoura Ghalamkari
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Farzaneh Abbasi
- Growth and Development Research Center, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Razzaghy-Azar
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular - Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sayarifard
- Growth and Development Research Center, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Rahim Vakili
- Department of Pediatric Endocrinology and Metabolism, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Sedghi
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Noroozi Asl
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sousan Hosseini
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular - Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
2
|
Simón Frapolli VJ, López Montalbán Á, Picón César MJ. [Monogenic diabetes due to mutation in the KCNJ11 gene]. Med Clin (Barc) 2024; 163:154-155. [PMID: 38677917 DOI: 10.1016/j.medcli.2024.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 04/29/2024]
Affiliation(s)
- Víctor José Simón Frapolli
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, España.
| | - Ángel López Montalbán
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, España
| | - María José Picón César
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, España
| |
Collapse
|
3
|
Pipatpolkai T, Usher S, Stansfeld PJ, Ashcroft FM. New insights into K ATP channel gene mutations and neonatal diabetes mellitus. Nat Rev Endocrinol 2020; 16:378-393. [PMID: 32376986 DOI: 10.1038/s41574-020-0351-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
Abstract
The ATP-sensitive potassium channel (KATP channel) couples blood levels of glucose to insulin secretion from pancreatic β-cells. KATP channel closure triggers a cascade of events that results in insulin release. Metabolically generated changes in the intracellular concentrations of adenosine nucleotides are integral to this regulation, with ATP and ADP closing the channel and MgATP and MgADP increasing channel activity. Activating mutations in the genes encoding either of the two types of KATP channel subunit (Kir6.2 and SUR1) result in neonatal diabetes mellitus, whereas loss-of-function mutations cause hyperinsulinaemic hypoglycaemia of infancy. Sulfonylurea and glinide drugs, which bind to SUR1, close the channel through a pathway independent of ATP and are now the primary therapy for neonatal diabetes mellitus caused by mutations in the genes encoding KATP channel subunits. Insight into the molecular details of drug and nucleotide regulation of channel activity has been illuminated by cryo-electron microscopy structures that reveal the atomic-level organization of the KATP channel complex. Here we review how these structures aid our understanding of how the various mutations in the genes encoding Kir6.2 (KCNJ11) and SUR1 (ABCC8) lead to a reduction in ATP inhibition and thereby neonatal diabetes mellitus. We also provide an update on known mutations and sulfonylurea therapy in neonatal diabetes mellitus.
Collapse
Affiliation(s)
- Tanadet Pipatpolkai
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Samuel Usher
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, Oxford, UK
- School of Life Sciences, University of Warwick, Coventry, UK
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Abstract
Neonatal diabetes mellitus (DM) is defined by the onset of persistent hyperglycemia within the first six months of life but may present up to 12 months of life. A gene mutation affecting pancreatic beta cells or synthesis/secretion of insulin is present in more than 80% of the children with neonatal diabetes. Neonatal DM can be transient, permanent, or be a component of a syndrome. Genetic testing is important as a specific genetic mutation can significantly alter the treatment and outcome. Patients with mutations of either KCNJ11 or ABCC8 that encode subunits of the KATP channel gene mutation can be managed with sulfonylurea oral therapy while patients with other genetic mutations require insulin treatment.
Collapse
Affiliation(s)
- Amanda Dahl
- Division of Pediatric Endocrinology and Metabolism, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Seema Kumar
- Division of Pediatric Endocrinology and Metabolism, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Correspondence: Seema Kumar Division of Pediatric Endocrinology and Metabolism, Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN55590, USATel +1 507-284-3300Fax +1 507-284-0727 Email
| |
Collapse
|
5
|
Successful sulfonylurea treatment of a neonate with neonatal diabetes mellitus due to a novel missense mutation, p.P1199L, in the ABCC8 gene. J Perinatol 2012; 32:645-7. [PMID: 22842804 DOI: 10.1038/jp.2012.46] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neonatal/infancy-onset diabetes mellitus is a monogenic form of diabetes with onset within 6 months of age. Two distinct types of neonatal diabetes mellitus have been recognized: permanent and transient. Mutations within the K(+)ATP channel and insulin genes are found in most patients with permanent diabetes mellitus. There have been several reports of the successful transition from insulin to sulfonylurea agents in patients with permanent diabetes mellitus caused by mutations in the KCNJ11 gene. We report on a term female neonate with a novel missense mutation, p.P1199L, in the ABCC8 gene that encodes the sulfonylurea receptor 1 whose treatment was successfully converted from insulin to sulfonylurea.
Collapse
|