1
|
Maria Ferreira Cavalcanti A, Tavanelli Hernandes R, Harummyy Takagi E, Ernestina Cabílio Guth B, de Lima Ori É, Regina Schicariol Pinheiro S, Sueli de Andrade T, Louzada Oliveira S, Cecilia Cergole-Novella M, Rodrigues Francisco G, dos Santos LF. Virulence Profiling and Molecular Typing of Shiga Toxin-Producing E. coli (STEC) from Human Sources in Brazil. Microorganisms 2020; 8:microorganisms8020171. [PMID: 31991731 PMCID: PMC7074907 DOI: 10.3390/microorganisms8020171] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
Since no recent data characterizing Shiga toxin-producing E. coli (STEC) from human infections in Brazil are available, the present study aimed to investigate serotypes, stx genotypes, and accessory virulence genes, and also to perform pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST) of 43 STEC strains recovered from 2007 to 2017. Twenty-one distinct serotypes were found, with serotype O111:H8 being the most common. However, serotypes less frequently reported in human diseases were also found and included a hybrid STEC/ETEC O100:H25 clone. The majority of the strains carried stx1a as the sole stx genotype and were positive for the eae gene. Regarding the occurrence of 28 additional virulence genes associated with plasmids and pathogenicity islands, a diversity of profiles was found especially among the eae-harboring strains, which had combinations of markers composed of up to 12 distinct genes. Although PFGE analysis demonstrated genetic diversity between serotypes such as O157:H7, O111:H8, O26:H11, O118:H16, and O123:H2, high genetic relatedness was found for strains of serotypes O24:H4 and O145:H34. MLST allowed the identification of 17 distinct sequence types (STs) with ST 16 and 21 being the most common ones. Thirty-five percent of the strains studied were not typeable by the currently used MLST approach, suggesting new STs. Although STEC O111:H8 remains the leading serotype in Brazil, a diversity of other serotypes, some carrying virulence genes and belonging to STs incriminated as causing severe disease, were found in this study. Further studies are needed to determine whether they have any epidemiological relevance.
Collapse
Affiliation(s)
- Adriene Maria Ferreira Cavalcanti
- Centro de Bacteriologia (National Reference Laboratory for STEC infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brasil; (A.M.F.C.); (E.H.T.); (S.R.S.P.); (T.S.d.A.); (M.C.C.-N.); (G.R.F.)
| | - Rodrigo Tavanelli Hernandes
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, SP, Brasil; (R.T.H.); (S.L.O.)
| | - Elizabeth Harummyy Takagi
- Centro de Bacteriologia (National Reference Laboratory for STEC infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brasil; (A.M.F.C.); (E.H.T.); (S.R.S.P.); (T.S.d.A.); (M.C.C.-N.); (G.R.F.)
| | - Beatriz Ernestina Cabílio Guth
- Departamento de Microbiologia, Imunologia, Parasitologia, Escola Paulista de Medicina Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brasil;
| | - Érica de Lima Ori
- Centro de Bacteriologia (National Reference Laboratory for STEC infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brasil; (A.M.F.C.); (E.H.T.); (S.R.S.P.); (T.S.d.A.); (M.C.C.-N.); (G.R.F.)
| | - Sandra Regina Schicariol Pinheiro
- Centro de Bacteriologia (National Reference Laboratory for STEC infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brasil; (A.M.F.C.); (E.H.T.); (S.R.S.P.); (T.S.d.A.); (M.C.C.-N.); (G.R.F.)
| | - Tânia Sueli de Andrade
- Centro de Bacteriologia (National Reference Laboratory for STEC infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brasil; (A.M.F.C.); (E.H.T.); (S.R.S.P.); (T.S.d.A.); (M.C.C.-N.); (G.R.F.)
| | - Samara Louzada Oliveira
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, SP, Brasil; (R.T.H.); (S.L.O.)
| | - Maria Cecilia Cergole-Novella
- Centro de Bacteriologia (National Reference Laboratory for STEC infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brasil; (A.M.F.C.); (E.H.T.); (S.R.S.P.); (T.S.d.A.); (M.C.C.-N.); (G.R.F.)
| | - Gabriela Rodrigues Francisco
- Centro de Bacteriologia (National Reference Laboratory for STEC infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brasil; (A.M.F.C.); (E.H.T.); (S.R.S.P.); (T.S.d.A.); (M.C.C.-N.); (G.R.F.)
| | - Luís Fernando dos Santos
- Centro de Bacteriologia (National Reference Laboratory for STEC infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brasil; (A.M.F.C.); (E.H.T.); (S.R.S.P.); (T.S.d.A.); (M.C.C.-N.); (G.R.F.)
- Correspondence: ; Tel.: +55-11-3068-2896
| |
Collapse
|
2
|
Castro VS, Figueiredo EEDS, Stanford K, McAllister T, Conte-Junior CA. Shiga-Toxin Producing Escherichia Coli in Brazil: A Systematic Review. Microorganisms 2019; 7:E137. [PMID: 31100803 PMCID: PMC6560443 DOI: 10.3390/microorganisms7050137] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 02/07/2023] Open
Abstract
Shiga-toxin producing E. coli (STEC) can cause serious illnesses, including hemorrhagic colitis and hemolytic uremic syndrome. This is the first systematic review of STEC in Brazil, and will report the main serogroups detected in animals, food products and foodborne diseases. Data were obtained from online databases accessed in January 2019. Papers were selected from each database using the Mesh term entries. Although no human disease outbreaks in Brazil related to STEC has been reported, the presence of several serogroups such as O157 and O111 has been verified in animals, food, and humans. Moreover, other serogroups monitored by international federal agencies and involved in outbreak cases worldwide were detected, and other unusual strains were involved in some isolated individual cases of foodborne disease, such as serotype O118:H16 and serogroup O165. The epidemiological data presented herein indicates the presence of several pathogenic serogroups, including O157:H7, O26, O103, and O111, which have been linked to disease outbreaks worldwide. As available data are concentrated in the Sao Paulo state and almost completely lacking in outlying regions, epidemiological monitoring in Brazil for STEC needs to be expanded and food safety standards for this pathogen should be aligned to that of the food safety standards of international bodies.
Collapse
Affiliation(s)
- Vinicius Silva Castro
- Institute of Chemistry, Universidade Federal do Rio de Janeiro, 21941-909 Rio de Janeiro, Brazil.
- Agronomy and Animal Science College, Universidade Federal de Mato Grosso, 78060-900 Cuiabá-Mato Grosso, Brazil.
- Nutrition College, Universidade Federal de Mato Grosso, 78060-900 Cuiabá-Mato Grosso, Brazil.
- Department of Food Technology, Faculdade de Veterinária, Universidade Federal Fluminense, 24230-340 Rio de Janeiro, Brazil.
| | - Eduardo Eustáquio de Souza Figueiredo
- Agronomy and Animal Science College, Universidade Federal de Mato Grosso, 78060-900 Cuiabá-Mato Grosso, Brazil.
- Nutrition College, Universidade Federal de Mato Grosso, 78060-900 Cuiabá-Mato Grosso, Brazil.
- Alberta Agriculture and Forestry, #100-5401 1st Ave. S, Lethbridge, AB T1J 4V6, Canada.
| | - Kim Stanford
- Alberta Agriculture and Forestry, #100-5401 1st Ave. S, Lethbridge, AB T1J 4V6, Canada.
| | - Tim McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada.
| | - Carlos Adam Conte-Junior
- Institute of Chemistry, Universidade Federal do Rio de Janeiro, 21941-909 Rio de Janeiro, Brazil.
- Department of Food Technology, Faculdade de Veterinária, Universidade Federal Fluminense, 24230-340 Rio de Janeiro, Brazil.
- National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-900 Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Gonzalez AGM, Cerqueira AMF, Guth BEC, Coutinho CA, Liberal MHT, Souza RM, Andrade JRC. Serotypes, virulence markers and cell invasion ability of Shiga toxin-producing Escherichia coli strains isolated from healthy dairy cattle. J Appl Microbiol 2016; 121:1130-43. [PMID: 27426967 DOI: 10.1111/jam.13230] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/10/2016] [Accepted: 06/20/2016] [Indexed: 01/25/2023]
Abstract
AIM The occurrence of virulence markers, serotypes and invasive ability were investigated in Shiga toxin-producing Escherichia coli (STEC) isolated from faecal samples of healthy dairy cattle at Rio de Janeiro State, Brazil. METHODS AND RESULTS From 1562 stx-positive faecal samples, 105 STEC strains were isolated by immuno-magnetic separation (IMS) or plating onto MacConkey agar (MC) followed by colony hybridisation. Fifty (47·6%) strains belonged to nine serotypes (O8:H19, O22:H8, O22:H16, O74:H42, O113:H21, O141:H21, O157:H7, O171:H2 and ONT:H21). The prevalent serotypes were O157:H7 (12·4%), O113:H21 (6·7%) and O8:H19 (5·7%). Virulence genes were identified by polymerase chain reaction (PCR). E-hlyA (77·1%) was the more prevalent virulence marker, followed by espP (64·8%), saa (39%), eae (24·8%) and astA (21·9%). All O157:H7 strains carried the γ (gamma) variant of the locus of enterocyte effacement (LEE) genes and the stx2c gene, while the stx1/stx2 genotype prevailed among the eae-negative strains. None of the eae-positive STEC produced the localized adherence (LA) phenotype in HEp-2 or Caco-2 cells. However, intimate attachment (judged by the fluorescent actin staining test) was detected in some eae-positive strains, both in HEp-2 (23·1%) and in Caco-2 cells (11·5%). Most strains (87·5%) showed 'peripheral association' (PA) adherence phenotype to undifferentiated Caco-2 cells. Twenty-five (92·6%) of 27 strains invaded Caco-2 cells. The highest average value of invasion (9·6%) was observed among the eae-negative bovine strains from serotypes described in human disease. CONCLUSION Healthy dairy cattle is a reservoir of STEC carrying virulence genes and properties associated with human disease. SIGNIFICANCE AND IMPACT OF THE STUDY Although reports of human disease associated with STEC are scarce in Brazil, the colonization of the animal reservoir by potentially pathogenic strains offers a significant risk to our population.
Collapse
Affiliation(s)
- A G M Gonzalez
- Departamento de Bromatologia, Universidade Federal Fluminense, Niterói, Brasil.
| | - A M F Cerqueira
- Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói, Brasil
| | - B E C Guth
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brasil
| | - C A Coutinho
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil
| | - M H T Liberal
- Centro Estadual de Pesquisa em Sanidade Animal, Pesagro-Rio, Niterói, Brasil
| | - R M Souza
- Centro Estadual de Pesquisa em Sanidade Animal, Pesagro-Rio, Niterói, Brasil
| | - J R C Andrade
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
4
|
de Aguiar SC, Zeoula LM, do Prado OPP, Arcuri PB, Forano E. Characterization of rumen bacterial strains isolated from enrichments of rumen content in the presence of propolis. World J Microbiol Biotechnol 2014; 30:2917-26. [PMID: 25172217 DOI: 10.1007/s11274-014-1719-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 08/07/2014] [Indexed: 01/20/2023]
Abstract
Propolis presents many biological properties, including antibacterial activities, and has been proposed as an additive in ruminant nutrition. Twenty bacterial strains, previously isolated from enrichments of Brazilian cow rumen contents in the presence of different propolis extracts (LLOS), were characterized using phenotyping and 16S rRNA identification. Seven strains were assigned to Streptococcus sp., most likely S. bovis, and were all degrading starch. One amylolytic lactate-utilizing strain of Selenomonas ruminantium was also found. Two strains of Clostridium bifermentans were identified and showed proteolytic activity. Two strains were assigned to Mitsuokella jalaludinii and were saccharolytic. One strain belonged to a Bacillus species and seven strains were affiliated with Escherichia coli. All of the 20 strains were able to use many sugars, but none of them were able to degrade the polysaccharides carboxymethylcellulose and xylans. The effect of three propolis extracts (LLOS B1, C1 and C3) was tested on the in vitro growth of four representative isolates of S. bovis, E. coli, M. jalaludinii and C. bifermentans. The growth of S. bovis, E. coli and M. jalaludinii was not affected by the three propolis extracts at 1 mg ml(-1). C. bifermentans growth was completely inhibited at this LLOS concentration, but this bacterium was partially resistant at lower concentrations. LLOS C3, with the lower concentration of phenolic compounds, was a little less inhibitory than B1 and C1 on this strain.
Collapse
Affiliation(s)
- Sílvia Cristina de Aguiar
- Departamento de Zootecnia, Universidade Estadual de Maringá, Avenida Colombo 5790, Maringá, PR, 87020-900, Brazil
| | | | | | | | | |
Collapse
|
5
|
Humoral immune response to Shiga Toxin 2 (Stx2) among Brazilian urban children with hemolytic uremic syndrome and healthy controls. BMC Infect Dis 2014; 14:320. [PMID: 24919599 PMCID: PMC4060089 DOI: 10.1186/1471-2334-14-320] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/28/2014] [Indexed: 11/26/2022] Open
Abstract
Background Shiga toxin (Stx)-producing Escherichia coli (STEC) infection is associated with hemolytic uremic syndrome (HUS), the main cause of acute renal failure in early childhood. Stx is essential in the pathogenesis of HUS, which has been mostly related to Stx2-producing isolates. Very limited data exist on the immune response to STEC in the Brazilian population. In this study, the prevalence of immunoglobulin G (IgG) antibodies to Stx2 was investigated in sera of children diagnosed with HUS and of healthy children in the city of São Paulo, Brazil. Methods IgG-antibody reactivity to Stx2 was determined by immunoblotting (WB) and enzyme-linked immunosorbent assay (ELISA) in sera from 13 children with HUS aged 8 months to 6 years and 54 healthy urban children aged 5 months to 7 years. Results A positive immune response to the A and B subunits of Stx2 was observed in 46.1% HUS patients and in 16.6% healthy individuals by WB. All HUS patients and 62.9% healthy children showed IgG antibodies to the Stx2 A subunit. The frequency of antibodies to both subunits or only to the A subunit of Stx2 was significantly higher in HUS patients than controls (p < 0.05). Also, the mean OD value obtained by ELISA was higher in that group. Considering children’s age, the frequency of reactivity to either the A subunit or both subunits of Stx2 was considerably higher in HUS children up to three years old compared to controls in the same age range. Moreover, in almost 37% of healthy children, no immune response to Stx2 was detected independently of the child’s age. Conclusions The seroepidemiolgy of anti-Stx2 antibodies was described for the first time in healthy children and children with HUS in Brazil. The percentage of individuals showing antibodies against Stx2 was higher among HUS patients than controls, and in spite of the low number of notified HUS cases, STEC strains are circulating in our settings. In addition, the results obtained also corroborated previous data on the increased sensitivity and specificity of WB compared to toxin-based enzyme immunoassays.
Collapse
|
6
|
Forano E, Chaucheyras-Durand F, Bertin Y, Martin C. [EHEC carriage in ruminants and probiotic effects]. Biol Aujourdhui 2013; 207:261-7. [PMID: 24594574 DOI: 10.1051/jbio/2013023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Indexed: 01/01/2023]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) are Shiga-Toxin producing E. coli (STEC) that cause human outbreaks which can lead to a severe illness such as haemolytic-uraemic syndrome (HUS), particularly in young children. The gastrointestinal tract of cattle and other ruminants is the principal reservoir of EHEC strains and outbreaks have been associated with direct contact with the farm environment, and with the consumption of meat, dairy products, water and fruit or vegetable contaminated with ruminant manure. Several outbreaks occurred these last years in France. In Brazil, although STEC carriage in ruminants is important, human cases due to EHEC are fairly rare. In order to reduce EHEC survival in the ruminant gastrointestinal tract and thus limit contamination of food products, it is necessary to determine the mechanisms underlying EHEC persistence in this ecosystem with the aim of developing nutritional or ecological strategies. The effect of probiotics has been tested in vitro on the growth and survival of EHEC strains and in vivo on the animal carriage of these strains. Various studies have then shown that lactic bacteria or non-pathogenic E. coli strains were able to limit EHEC fecal shedding. In addition, understanding EHEC physiology in the ruminant gut is also critical for limiting EHEC shedding. We found that EHEC O157:H7 is able to use ethanolamine and mucus-derived sugars as nitrogen and carbon sources, respectively. Thus, these substrates represent an ecological niche for EHEC and their utilization confers a competitive growth advantage to these pathogens as they use them more rapidly than the bacteria belonging to the resident intestinal microbiota. Understanding EHEC metabolism and ecology in the bovine intestinal tract will allow proposing probiotic strains to compete with EHEC for nutrients and thus decrease the sanitary risk.
Collapse
Affiliation(s)
- Evelyne Forano
- INRA, UR 454 Microbiologie, Centre de Recherches de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| | - Frédérique Chaucheyras-Durand
- INRA, UR 454 Microbiologie, Centre de Recherches de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France - Lallemand Animal Nutrition, 19 rue des Briquetiers, 31702 Blagnac, France
| | - Yolande Bertin
- INRA, UR 454 Microbiologie, Centre de Recherches de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| | - Christine Martin
- INRA, UR 454 Microbiologie, Centre de Recherches de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| |
Collapse
|
7
|
de Souza RL, Abreu Carvalhaes JT, Sanae Nishimura L, de Andrade MC, Cabilio Guth BE. Hemolytic uremic syndrome in pediatric intensive care units in são paulo, Brazil. Open Microbiol J 2011; 5:76-82. [PMID: 21804902 PMCID: PMC3143539 DOI: 10.2174/1874285801105010076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 05/12/2011] [Accepted: 05/12/2011] [Indexed: 01/08/2023] Open
Abstract
The hemolytic uremic syndrome (HUS) caused by Shiga toxin-producing Escherichia coli (STEC) is one of the most frequent causes of pediatric acute renal failure. The aim of this study was to report the clinic and microbiologic features associated with 13 post-diarrheal HUS cases identified in pediatric intensive care units in the city of São Paulo, Brazil, from January 2001 to August 2005. Epidemiologic, clinic, and laboratorial information, along with fecal and serum samples, were collected for identifying the genetic sequences of Stx and for studying antibodies directed against LPS O26, O111 and O157. STEC was isolated from three patients, and serotypes O26:H11, O157:H7 and O165:H- were identified. In nine patients, high levels of IgM against LPS O111 (n=2) and O157 (n=7) were detected. Dialysis was required in 76.9% of the patients; arterial hypertension was present in 61.5%, neurological complications were observed in 30.7%, and only one patient died. During a 5-year follow-up period, one patient developed chronic kidney disease. The combined use of microbiologic and serologic techniques provided evidence of STEC infection in 92.3% of the HUS cases studied, and the importance of O157 STEC as agents of HUS in São Paulo has not been previously highlighted.
Collapse
Affiliation(s)
- Renato Lopes de Souza
- Pediatric Intensive Care Unit, Department of Pediatrics, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
8
|
dos Santos LF, Irino K, Vaz TMI, Guth BEC. Set of virulence genes and genetic relatedness of O113 : H21 Escherichia coli strains isolated from the animal reservoir and human infections in Brazil. J Med Microbiol 2010; 59:634-640. [DOI: 10.1099/jmm.0.015263-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli strains of serotype O113 : H21 are commonly described as belonging to a Shiga toxin (Stx)-producing E. coli (STEC) pathotype worldwide. Albeit this STEC serotype is frequently identified among cattle and other domestic animals, to the best of our knowledge no human infections associated with STEC O113 : H21 have been registered in Brazil to date. Here, we report the virulence profile and genetic relatedness of a collection of O113 : H21 E. coli strains mainly isolated from the animal reservoir aimed at determining their potential as human pathogens. The strains from the animal reservoir (n=34) were all classified as STEC, whereas the few isolates recovered so far from human diarrhoea (n=3) lacked stx genes. Among the STEC, the stx
2d-activatable gene was identified in 85 % of the strains that also carried lpfA
O113, iha, saa, ehxA, subAB, astA, cdt-V, espP, espI and epeA; the human strains harboured only lpfA
O113, iha and astA. All the strains except one, isolated from cattle, were genetically classified as phylogenetic group B1. High mass plasmids were observed in 25 isolates, but only in the STEC group were these plasmids confirmed as the STEC O113 megaplasmid (pO113). Many closely related subgroups (more than 80 % similarity) were identified by PFGE, with human isolates clustering in a subgroup separate from most of the animal isolates. In conclusion, potentially pathogenic O113 : H21 STEC isolates carrying virulence markers in common with O113 : H21 clones associated with haemolytic uraemic syndrome cases in other regions were demonstrated to occur in the natural reservoir in our settings, and therefore the risk represented by them to public health should be carefully monitored.
Collapse
Affiliation(s)
- Luis Fernando dos Santos
- Departament of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Kinue Irino
- Section of Bacteriology, Adolfo Lutz Institute, São Paulo, Brazil
| | | | | |
Collapse
|
9
|
De Toni F, de Souza EM, Pedrosa FO, Klassen G, Irino K, Un Rigo L, Steffens MBR, Fialho OB, Farah SMSS, Fadel-Picheth CMT. A prospective study on Shiga toxin-producing Escherichia coli in children with diarrhea in Paraná State, Brazil. Lett Appl Microbiol 2009; 48:645-7. [PMID: 19228288 DOI: 10.1111/j.1472-765x.2009.02569.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To examine stool specimens from children with diarrhea from Paraná State, southern Brazil, for presence of STEC. METHODS AND RESULTS A PCR screening assay for stx genes was used to examine a loopful of confluent colonies of 306 stool samples cultures. In six (1.96%) of them, DNA fragments of the expected size were observed, and the presence of stx was confirmed by DNA sequencing. Then up to 100 single colonies from each of the six stool cultures were analyzed using the same PCR protocol. However, stx-positive colonies were found only in two of the cultures. The E. coli strains belonged to serotypes O69:H11 and O178:H19, and presented genotypes stx(1)eae ehxA and stx(1) respectively. Shiga toxin production was confirmed using the VTEC Screen Seiken. Except ampicillin, they were susceptible to all the antimicrobials tested. CONCLUSIONS These results show that STEC may be an important cause of diarrhea in children of Paraná State, and that they are present in low numbers in stools. The strains belonged to serotypes not commonly found associated with STEC and probably present low virulence. SIGNIFICANCE AND IMPACT OF STUDY These results indicate that molecular methods are required to diagnosis of STEC infections.
Collapse
Affiliation(s)
- F De Toni
- Department of Medical Pathology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Detection and characterization of the fimbrial sfp cluster in enterohemorrhagic Escherichia coli O165:H25/NM isolates from humans and cattle. Appl Environ Microbiol 2008; 75:64-71. [PMID: 18978078 DOI: 10.1128/aem.01815-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sfp cluster, encoding Sfp fimbriae and located in the large plasmid of sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157 (pSFO157), has been considered a unique characteristic of this organism. We discovered and then characterized the sfp cluster in EHEC O165:H25/NM (nonmotile) isolates of human and bovine origin. All seven strains investigated harbored a complete sfp cluster (carrying sfpA, sfpH, sfpC, sfpD, sfpJ, sfpF, and sfpG) of 6,838 bp with >99% nucleotide sequence homology to the sfp cluster of SF EHEC O157:NM. The sfp cluster in EHEC O165:H25/NM strains was located in an approximately 80-kb (six strains) or approximately 120-kb (one strain) plasmid which differed in structure, virulence genes, and sfp flanks from pSFO157. All O165:H25/NM strains belonged to the same multilocus sequence type (ST119) and were only distantly phylogenetically related to SF EHEC O157:NM (ST11). The highly conserved sfp cluster in different clonal backgrounds suggests that this segment was acquired independently by EHEC O165:H25 and SF EHEC O157:NM. Its presence in an additional EHEC serotype extends the diagnostic utility of PCR targeting sfpA as an easy and efficient approach to seek EHEC in patients' stools. The reasons for the convergence of pathogenic EHEC strains on a suite of virulence loci remain unknown.
Collapse
|