1
|
Burke Ó, Zeden MS, O’Gara JP. The pathogenicity and virulence of the opportunistic pathogen Staphylococcus epidermidis. Virulence 2024; 15:2359483. [PMID: 38868991 PMCID: PMC11178275 DOI: 10.1080/21505594.2024.2359483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024] Open
Abstract
The pervasive presence of Staphylococcus epidermidis and other coagulase-negative staphylococci on the skin and mucous membranes has long underpinned a casual disregard for the infection risk that these organisms pose to vulnerable patients in healthcare settings. Prior to the recognition of biofilm as an important virulence determinant in S. epidermidis, isolation of this microorganism in diagnostic specimens was often overlooked as clinically insignificant with potential delays in diagnosis and onset of appropriate treatment, contributing to the establishment of chronic infection and increased morbidity or mortality. While impressive progress has been made in our understanding of biofilm mechanisms in this important opportunistic pathogen, research into other virulence determinants has lagged S. aureus. In this review, the broader virulence potential of S. epidermidis including biofilm, toxins, proteases, immune evasion strategies and antibiotic resistance mechanisms is surveyed, together with current and future approaches for improved therapeutic interventions.
Collapse
Affiliation(s)
- Órla Burke
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | | | - James P. O’Gara
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
2
|
Wang F, Wang H, Zhang L, Ji T, Gao Y, Wang Y, Dong S, Gao X. An improved recombinase polymerase amplification assay for the visual detection of Staphylococcus epidermidis with lateral flow strips. Clin Chim Acta 2023; 548:117455. [PMID: 37394163 DOI: 10.1016/j.cca.2023.117455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
Staphylococcus epidermidis is an opportunistic pathogenic microorganism that is an important cause of cross-infection in hospitals. The development of rapid and effective detection techniques is important for its control. The application of traditional identification and PCR-based methods is limited by their requirements for both laboratory instrumentation and trained personnel. To overcome this issue, we developed a fast detection approach for S. epidermidis that was based on recombinase polymerase amplification (RPA) and lateral flow strips (LFS). First, five pairs of primers were designed for molecular diagnosis using the sesB gene as the target, and were screened for their amplification performance and the formation of primer dimers. Specific probes were then designed based on the best primer pairs screened, which were susceptible to primer-dependent artifacts and generated false-positive signals when used for LFS detection. This weakness of the LFS assay was overcome by modifying the sequences of the primers and probes. The efficacy of these measures was rigorously tested, and improved the RPA-LFS system. Standardized systems completed the amplification process within 25 min at a constant temperature of 37 °C, followed by visualization of the LFS within 3 min. The approach was very sensitive (with a detection limit of 8.91 CFU/μL), with very good interspecies specificity. In the analysis of clinical samples, the approach produced results consistent with PCR and 97.78% consistent with the culture-biochemical method, with a kappa index of 0.938. Our method was rapid, accurate, and less dependent on equipment and trained personnel than traditional methods, and provided information for the timely development of rational antimicrobial treatment plans. It has high potential utility in clinical settings, particularly in resource-constrained locations.
Collapse
Affiliation(s)
- Fang Wang
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University), Lianyungang 222023, China; Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang 222023, China
| | - Hui Wang
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University), Lianyungang 222023, China
| | - Linhai Zhang
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University), Lianyungang 222023, China
| | - Tuo Ji
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University), Lianyungang 222023, China; Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang 222023, China
| | - Yuzhi Gao
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University), Lianyungang 222023, China; Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang 222023, China
| | - Yan Wang
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University), Lianyungang 222023, China
| | - Shude Dong
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University), Lianyungang 222023, China.
| | - Xuzhu Gao
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University), Lianyungang 222023, China; Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang 222023, China.
| |
Collapse
|
3
|
Monteiro ACM, Fortaleza CMCB, Ferreira AM, Cavalcante RDS, Mondelli AL, Bagagli E, da Cunha MDLRDS. Comparison of methods for the identification of microorganisms isolated from blood cultures. Ann Clin Microbiol Antimicrob 2016; 15:45. [PMID: 27496125 PMCID: PMC4974807 DOI: 10.1186/s12941-016-0158-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/14/2016] [Indexed: 11/12/2022] Open
Abstract
Background Bloodstream infections are responsible for thousands of deaths each year. The rapid identification of the microorganisms causing these infections permits correct therapeutic management that will improve the prognosis of the patient. In an attempt to reduce the time spent on this step, microorganism identification devices have been developed, including the VITEK® 2 system, which is currently used in routine clinical microbiology laboratories. Methods This study evaluated the accuracy of the VITEK® 2 system in the identification of 400 microorganisms isolated from blood cultures and compared the results to those obtained with conventional phenotypic and genotypic methods. In parallel to the phenotypic identification methods, the DNA of these microorganisms was extracted directly from the blood culture bottles for genotypic identification by the polymerase chain reaction (PCR) and DNA sequencing. Results The automated VITEK® 2 system correctly identified 94.7 % (379/400) of the isolates. The YST and GN cards resulted in 100 % correct identifications of yeasts (15/15) and Gram-negative bacilli (165/165), respectively. The GP card correctly identified 92.6 % (199/215) of Gram-positive cocci, while the ANC card was unable to correctly identify any Gram-positive bacilli (0/5). Conclusions The performance of the VITEK® 2 system was considered acceptable and statistical analysis showed that the system is a suitable option for routine clinical microbiology laboratories to identify different microorganisms.
Collapse
Affiliation(s)
- Aydir Cecília Marinho Monteiro
- Departamento de Microbiologia e Imunologia, Instituto de Biociências de Botucatu, UNESP-Univ. Estadual Paulista, Distrito de Rubião Junior, s/n, Botucatu, SP, CEP: 18618-970, Brazil
| | - Carlos Magno Castelo Branco Fortaleza
- Departamento de Doenças Tropicais, Faculdade de Medicina de Botucatu, UNESP-Univ. Estadual Paulista, Distrito de Rubião Junior, s/n, Botucatu, SP, CEP: 18618-970, Brazil
| | - Adriano Martison Ferreira
- Laboratório de Análises Clínicas do Hospital das Clínicas de Botucatu, Faculdade de Medicina de Botucatu, UNESP-Univ. Estadual Paulista, Distrito de Rubião Junior, s/n, Botucatu, SP, CEP: 18618-970, Brazil
| | - Ricardo de Souza Cavalcante
- Comissão de Controle de Infecção Relacionada à Assistência à Saúde, Hospital das Clínicas, Faculdade de Medicina de Botucatu, UNESP-Univ. Estadual Paulista, Distrito de Rubião Junior, s/n, Botucatu, SP, CEP: 18618-970, Brazil
| | - Alessandro Lia Mondelli
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, UNESP-Univ. Estadual Paulista, Distrito de Rubião Junior, s/n, Botucatu, SP, CEP: 18618-970, Brazil
| | - Eduardo Bagagli
- Departamento de Microbiologia e Imunologia, Instituto de Biociências de Botucatu, UNESP-Univ. Estadual Paulista, Distrito de Rubião Junior, s/n, Botucatu, SP, CEP: 18618-970, Brazil
| | - Maria de Lourdes Ribeiro de Souza da Cunha
- Departamento de Microbiologia e Imunologia, Instituto de Biociências de Botucatu, UNESP-Univ. Estadual Paulista, Distrito de Rubião Junior, s/n, Botucatu, SP, CEP: 18618-970, Brazil. .,Departamento de Doenças Tropicais, Faculdade de Medicina de Botucatu, UNESP-Univ. Estadual Paulista, Distrito de Rubião Junior, s/n, Botucatu, SP, CEP: 18618-970, Brazil.
| |
Collapse
|
4
|
Kleinschmidt S, Huygens F, Faoagali J, Rathnayake IU, Hafner LM. Staphylococcus epidermidis as a cause of bacteremia. Future Microbiol 2015; 10:1859-79. [DOI: 10.2217/fmb.15.98] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Staphylococcus epidermidis is a biofilm-producing commensal organism found ubiquitously on human skin and mucous membranes, as well as on animals and in the environment. Biofilm formation enables this organism to evade the host immune system. Colonization of percutaneous devices or implanted medical devices allows bacteria access to the bloodstream. Isolation of this organism from blood cultures may represent either contamination during the blood collection procedure or true bacteremia. S. epidermidis bloodstream infections may be indolent compared with other bacteria. Isolation of S. epidermidis from a blood culture may present a management quandary for clinicians. Over-treatment may lead to patient harm and increases in healthcare costs. There are numerous reports indicating the difficulty of predicting clinical infection in patients with positive blood cultures with this organism. No reliable phenotypic or genotypic algorithms currently exist to predict the pathogenicity of a S. epidermidis bloodstream infection. This review will discuss the latest advances in identification methods, global population structure, pathogenicity, biofilm formation, antimicrobial resistance and clinical significance of the detection of S. epidermidis in blood cultures. Previous studies that have attempted to discriminate between invasive and contaminating strains of S. epidermidis in blood cultures will be analyzed.
Collapse
Affiliation(s)
- Sharon Kleinschmidt
- School of Biomedical Sciences, Institute of Health & Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Microbiology Department, Pathology Queensland, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Flavia Huygens
- School of Biomedical Sciences, Institute of Health & Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Joan Faoagali
- School of Biomedical Sciences, Institute of Health & Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Irani U Rathnayake
- School of Biomedical Sciences, Institute of Health & Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Louise M Hafner
- School of Biomedical Sciences, Institute of Health & Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Paim TGDS, Cantarelli VV, d'Azevedo PA. Performance of the Vitek 2 system software version 5.03 in the bacterial identification and antimicrobial susceptibility test: evaluation study of clinical and reference strains of Gram-positive cocci. Rev Soc Bras Med Trop 2014; 47:377-81. [PMID: 25075490 DOI: 10.1590/0037-8682-0123-2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 11/19/2013] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION The genera Enterococcus, Staphylococcus and Streptococcus are recognized as important Gram-positive human pathogens. The aim of this study was to evaluate the performance of Vitek 2 in identifying Gram-positive cocci and their antimicrobial susceptibilities. METHODS One hundred four isolates were analyzed to determine the accuracy of the automated system for identifying the bacteria and their susceptibility to oxacillin and vancomycin. RESULTS The system correctly identified 77.9% and 97.1% of the isolates at the species and genus levels, respectively. Additionally, 81.8% of the Vitek 2 results agreed with the known antimicrobial susceptibility profiles. CONCLUSION Vitek 2 correctly identified the commonly isolated strains; however, the limitations of the method may lead to ambiguous findings.
Collapse
Affiliation(s)
- Thiago Galvão da Silva Paim
- Laboratório de Cocos Gram-Positivos, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Vlademir Vicente Cantarelli
- Laboratório de Cocos Gram-Positivos, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Pedro Alves d'Azevedo
- Laboratório de Cocos Gram-Positivos, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Detection of methicillin-resistant coagulase-negative staphylococci by the Vitek 2 system. J Clin Microbiol 2014; 52:3196-9. [PMID: 24951799 DOI: 10.1128/jcm.01162-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The accurate performance of the Vitek 2 GP67 card for detecting methicillin-resistant coagulase-negative staphylococci (CoNS) is not known. We prospectively determined the ability of the Vitek 2 GP67 card to accurately detect methicillin-resistant CoNS, with mecA PCR results used as the gold standard for a 4-month period in 2012. Included in the study were 240 consecutively collected nonduplicate CoNS isolates. Cefoxitin susceptibility by disk diffusion testing was determined for all isolates. We found that the three tested systems, Vitek 2 oxacillin and cefoxitin testing and cefoxitin disk susceptibility testing, lacked specificity and, in some cases, sensitivity for detecting methicillin resistance. The Vitek 2 oxacillin and cefoxitin tests had very major error rates of 4% and 8%, respectively, and major error rates of 38% and 26%, respectively. Disk cefoxitin testing gave the best performance, with very major and major error rates of 2% and 24%, respectively. The test performances were species dependent, with the greatest errors found for Staphylococcus saprophyticus. While the 2014 CLSI guidelines recommend reporting isolates that test resistant by the oxacillin MIC or cefoxitin disk test as oxacillin resistant, following such guidelines produces erroneous results, depending on the test method and bacterial species tested. Vitek 2 cefoxitin testing is not an adequate substitute for cefoxitin disk testing. For critical-source isolates, mecA PCR, rather than Vitek 2 or cefoxitin disk testing, is required for optimal antimicrobial therapy.
Collapse
|
7
|
Kilic A, Basustaoglu AC. Double triplex real-time PCR assay for simultaneous detection of Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus hominis, and Staphylococcus haemolyticus and determination of their methicillin resistance directly from positive blood culture bottles. Res Microbiol 2011; 162:1060-6. [PMID: 21925597 DOI: 10.1016/j.resmic.2011.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 07/28/2011] [Indexed: 10/17/2022]
Abstract
We developed and validated here a double triplex real-time PCR assay to simultaneously detect and identify Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus hominis, Staphylococcus haemolyticus and their methicillin resistance in a single reaction directly from Gram-positive cocci-in-clusters (GPCs)-positive blood culture bottles. From August 15, 2009 through February 15, 2010, 238 GPC-positive samples were collected and identified by conventional methods as 11 methicillin-resistant S. aureus (MRSA), 28 methicillin-susceptible S. aureus (MSSA), 176 MR coagulase-negative staphylococci (MRCoNS), 21 MSCoNS and two Enterococcus faecalis. The double triplex real-time PCR assay was targeted and detected tuf, nuc and mecA genes in the first tube and atlE, gap and mvaA genes in the second tube which could be run simultaneously. The detection limit of the assay was found at 10(3) CFU/ml for the atleE gene, 10(4) CFU/ml for the mva gene and 10(5) CFU/ml for gap, nuc, mecA and tuf genes based on seeding experiments. All Staphylococcus species except two S. epidermidis were correctly identified by the assay. The double triplex real-time PCR assay quickly and accurately detects S. aureus, S. epidermidis, S. hominis and S. haemolyticus and their methicillin resistance in a single reaction directly from positive blood culture bottles within 83 min.
Collapse
Affiliation(s)
- Abdullah Kilic
- Department of Microbiology and Clinical Microbiology, Gulhane Military Medical Academy and School of Medicine, 06018 Ankara, Turkey.
| | | |
Collapse
|