1
|
Haq SU, Ling W, Aqib AI, Danmei H, Aleem MT, Fatima M, Ahmad S, Gao F. Exploring the intricacies of antimicrobial resistance: Understanding mechanisms, overcoming challenges, and pioneering innovative solutions. Eur J Pharmacol 2025; 998:177511. [PMID: 40090539 DOI: 10.1016/j.ejphar.2025.177511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
Antimicrobial resistance (AMR) poses a growing global threat. This review examines AMR from diverse angles, tracing the story of antibiotic resistance from its origins to today's crisis. It explores the rise of AMR, from its historical roots to the urgent need to counter this escalating menace. The review explores antibiotic classes, mechanisms, resistance profiles, and genetics. It details bacterial resistance mechanisms with illustrative examples. Multidrug-resistant bacteria spotlight AMR's resilience. Modern AMR control offers hope through precision medicine, stewardship, combination therapy, surveillance, and international cooperation. Converging traditional and innovative treatments presents an exciting frontier as novel compounds seek to enhance antibiotic efficacy. This review calls for global unity and proactive engagement to address AMR collectively, emphasizing the quest for innovative solutions and responsible antibiotic use. It underscores the interconnectedness of science, responsibility, and action in combatting AMR. Humanity faces a choice between antibiotic efficacy and obsolescence. The call is clear: unite, innovate, and prevail against AMR.
Collapse
Affiliation(s)
- Shahbaz Ul Haq
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China.
| | - Wang Ling
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, 730050, China
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Huang Danmei
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Muhammad Tahir Aleem
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Mahreen Fatima
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Saad Ahmad
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
2
|
Wale YM, Roberts JA, Sime FB. Dynamic In Vitro PK/PD Infection Models for the Development and Optimisation of Antimicrobial Regimens: A Narrative Review. Antibiotics (Basel) 2024; 13:1201. [PMID: 39766591 PMCID: PMC11672834 DOI: 10.3390/antibiotics13121201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
The antimicrobial concentration-time profile in humans affects antimicrobial activity, and as such, it is critical for preclinical infection models to simulate human-like dynamic concentration-time profiles for maximal translatability. This review discusses the setup, principle, and application of various dynamic in vitro PK/PD infection models commonly used in the development and optimisation of antimicrobial treatment regimens. It covers the commonly used dynamic in vitro infection models, including the one-compartment model, hollow fibre infection model, biofilm model, bladder infection model, and aspergillus infection model. It summarises the mathematical methods for the simulation of the pharmacokinetic profile of single or multiple antimicrobials when using the serial or parallel configurations of in vitro systems. Dynamic in vitro models offer reliable pharmacokinetic/pharmacodynamic data to help define the initial dosing regimens of new antimicrobials that can be developed further in clinical trials. They can also help in the optimisation of dosing regimens for existing antimicrobials, especially in the presence of emerging antimicrobial resistance. In conclusion, dynamic in vitro infection models replicate the interactions that occur between microorganisms and dynamic antimicrobial exposures in the human body to generate data highly predictive of the clinical efficacy. They are particularly useful for the development new treatment strategies against antimicrobial-resistant pathogens.
Collapse
Affiliation(s)
- Yalew M. Wale
- Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos P.O. Box 269, Ethiopia
| | - Jason A. Roberts
- Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia
- Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4006, Australia
- Division of Anesthesia Critical Care and Emergency and Pain Medicine, Nimes University Hospital, University of Montpellier, UR UM 103, 34090 Nimes, France
- Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, QLD 4006, Australia
| | - Fekade B. Sime
- Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia
| |
Collapse
|
3
|
Silva MD, Sillankorva S. Otitis media pathogens – A life entrapped in biofilm communities. Crit Rev Microbiol 2019; 45:595-612. [DOI: 10.1080/1040841x.2019.1660616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Maria Daniela Silva
- CEB – Centre of Biological Engineering, LIBRO – Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| | - Sanna Sillankorva
- CEB – Centre of Biological Engineering, LIBRO – Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| |
Collapse
|
4
|
Kumar SV, Lo WKC, Brooks HJL, Hanton LR, Crowley JD. Antimicrobial Properties of Mono- and Di-fac-rhenium Tricarbonyl 2-Pyridyl-1,2,3-triazole Complexes. Aust J Chem 2016. [DOI: 10.1071/ch15433] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A family of mono- and di-fac-rhenium tricarbonyl 2-pyridyl-1,2,3-triazole complexes with different aliphatic and aromatic substituents was synthesized in good-to-excellent yields (46–99 %). The complexes were characterized by 1H and 13C NMR spectroscopy, infrared spectroscopy, electronic (UV-visible) spectroscopy, high-resolution electrospray mass spectrometry, and elemental analyses. In four examples, the solid-state structures of the rhenium(i) complexes were confirmed by X-ray crystallography. The family of the mono- and di-rhenium(i) complexes and the corresponding 2-pyridyl-1,2,3-triazole was tested for antimicrobial activity in vitro against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) microorganisms. Agar-based disk diffusion assays indicated that most of the rhenium(i) complexes were active against Staphylococcus aureus and that the cationic rhenium(i) complexes were more active than the related neutral systems. However, in all cases, the minimum inhibitory concentrations for all the complexes were modest (i.e. 16–1024 µg mL–1).
Collapse
|
5
|
Oates A, McBain AJ. Growth of MRSA and Pseudomonas aeruginosa in a fine-celled foam model containing sessile commensal skin bacteria. BIOFOULING 2016; 32:25-33. [PMID: 26727101 PMCID: PMC4706025 DOI: 10.1080/08927014.2015.1117607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/04/2015] [Indexed: 06/05/2023]
Abstract
Sessile cultures of the skin bacteria Staphylococcus saprophyticus and Corynebacterium xerosis were grown using novel fine-celled foam substrata to test the outcome of challenge by methicillin-resistant Staphylococcus aureus or Pseudomonas aeruginosa under three growth medium regimens (simulated sweat, simulated serum or simulated sweat substituted with simulated serum during the microbial challenge). S. saprophyticus and C. xerosis significantly limited MRSA and P. aeruginosa immigration respectively, under the simulated sweat and serum medium regimes. Under the substitution medium regime however, MRSA and P. aeruginosa integrated into pre-established biofilms to a significantly greater extent, attaining cell densities similar to the axenic controls. The outcome of challenge was influenced by the medium composition and test organism but could not be predicted based on planktonic competition assays or growth dynamics. Interactions between skin and wound isolates could be modelled using the fine-celled foam-based system. This model could be used to further investigate interactions and also in preclinical studies of antimicrobial wound care regimens.
Collapse
Affiliation(s)
- Angela Oates
- Manchester Pharmacy School, The University of Manchester, Manchester, UK
| | - Andrew J. McBain
- Manchester Pharmacy School, The University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Marsh RL, Thornton RB, Smith-Vaughan HC, Richmond P, Pizzutto SJ, Chang AB. Detection of biofilm in bronchoalveolar lavage from children with non-cystic fibrosis bronchiectasis. Pediatr Pulmonol 2015; 50:284-292. [PMID: 24644254 DOI: 10.1002/ppul.23031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 02/03/2014] [Indexed: 01/28/2023]
Abstract
BACKGROUND The presence of Pseudomonas aeruginosa biofilms in lower airway specimens from cystic fibrosis (CF) patients is well established. To date, biofilm has not been demonstrated in bronchoalveolar lavage (BAL) from people with non-CF bronchiectasis. The aim of this study was to determine (i) if biofilm was present in BAL from children with and without bronchiectasis, and (ii) if biofilm detection differed between sequentially collected BAL. METHODS Testing for biofilm in two sequentially collected BAL from children with and without bronchiectasis was done using BacLight™ live-dead staining and lectin staining for extracellular polymeric biofilm matrices. Bacterial culture and cytological measures were performed on the first and second lavages, respectively. Clinically important BAL infection was defined as >104 cfu of respiratory pathogens/ml BAL. RESULTS Biofilm was detected in BAL from seven of eight (87.5%) children with bronchiectasis (aged 0.8-6.9 years), but was not detected in any of three controls (aged 1.3-8.6 years). The biofilms contained both live and dead bacteria irrespective of antibiotic use prior to bronchoscopy. Biofilm was detected more frequently in the second lavage than the first. Three of the seven biofilm-positive BAL were culture-positive for respiratory pathogens at clinically important levels. CONCLUSIONS Biofilm is present in BAL from children with non-CF bronchiectasis even when BAL-defined clinically important infection was absent. Studies to characterize lower airway biofilms and determine how biofilm contributes to bronchiectasis disease progression and treatment outcomes are necessary. Pediatr Pulmonol. 2015; 50:284-292. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Robyn L Marsh
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Ruth B Thornton
- School of Paediatrics and Child Health, University of Western Australia, Perth, Western Australia, Australia.,Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Western Australia, Australia
| | - Heidi C Smith-Vaughan
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Peter Richmond
- School of Paediatrics and Child Health, University of Western Australia, Perth, Western Australia, Australia.,Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Western Australia, Australia
| | - Susan J Pizzutto
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Anne B Chang
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia.,Queensland Children's Respiratory Centre, Queensland Children's Medical Research Institute, Royal Children's Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
7
|
Do orally administered antibiotics reach concentrations in the middle ear sufficient to eradicate planktonic and biofilm bacteria? A review. Int J Pediatr Otorhinolaryngol 2015; 79:296-300. [PMID: 25623134 DOI: 10.1016/j.ijporl.2015.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Infectious conditions of the middle ear are a common and significant cause of morbidity and mortality worldwide. Systemic antibiotics are frequently used, but their effectiveness will depend on whether an adequate antibiotic concentration is achieved in the middle ear; this is especially important in biofilm infections such as otitis media with effusion (OME), where high antibiotic concentrations are typically required for effective treatment. OBJECTIVE This review examines what antibiotic levels can be reached in the middle ear with oral administration, as a means of guiding rational antibiotic choice in the clinic and future research, and to determine whether levels high enough for biofilm eradication are reached. METHODS A literature search of studies measuring levels of antibiotics in the plasma and in the middle ear after oral administration was conducted. These levels were compared to the minimum inhibitory concentrations (MIC) provided by the European Committee for Antimicrobial Susceptibility Testing (EUCAST) to determine if antibiotic doses were reaching sufficient levels to inhibit planktonic bacteria. The middle ear concentrations were then calculated as a multiple of the MIC to determine if the concentrations were reaching biofilm eradication concentrations (typically up to 1000×MIC). RESULTS The highest antibiotic levels against Staphylococcus aureus reach 8.3×MIC, against Moraxella catarrhalis 33.2×MIC, against Haemophilus influenzae 31.2×MIC, and against Streptococcus pneumoniae 46.2×MIC. The macrolide antibiotics reach higher levels in the middle ear than in plasma. CONCLUSIONS Orally administered antibiotics reach levels above the MIC in the middle ear. However, they do not reach levels that would be likely to eradicate biofilms.
Collapse
|