1
|
Nagaoka K, Iwanaga N, Takegoshi Y, Murai Y, Kawasuji H, Miura M, Sato Y, Hatakeyama Y, Ito H, Kato Y, Shibayama N, Terasaki Y, Fujimura T, Takazono T, Kosai K, Sugano A, Morinaga Y, Yanagihara K, Mukae H, Yamamoto Y. Mortality risk factors and fulminant sub-phenotype in anaerobic bacteremia: a 10-year retrospective, multicenter, observational cohort study. Eur J Clin Microbiol Infect Dis 2024; 43:459-467. [PMID: 38172403 DOI: 10.1007/s10096-023-04743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE During the last decade, the incidence of anaerobic bacteremia (AB) has been increasing. Patients with AB may develop complex underlying diseases, which can occasionally be accompanied by fatal or fulminant outcomes. However, the risk factors for AB-related mortality remain unclear. Herein, we sought to elucidate the risk factors for AB-related mortality. METHODS In this multicenter, retrospective, observational study, we enrolled patients with culture-proven AB from six tertiary hospitals in Japan, between January 2012 and December 2021. Data on patient and infection characteristics, laboratory findings, treatment, and outcome were collected, and their associations with mortality were analyzed. RESULTS A total of 520 participants were included. The 30-day mortality in the study cohort was 14.0% (73 patients), and malignant tumors were frequently observed comorbidities in 48% of the entire cohort. Multivariable logistic regression analysis showed a Charlson comorbidity score of > 6, serum creatinine level of > 1.17 mg/dL, and hypotension to be independent risk factors for 30-day mortality in AB (odds ratios [ORs] 2.12, 2.25, and 5.12, respectively; p < 0.05), whereas drainage significantly reduced this risk (OR, 0.28; p < 0.0001). Twelve patients (2.3% of the whole cohort and 16.4% of the deceased patients) presented with extremely rapid progression leading to fatal outcome, consistent with "fulminant AB." CONCLUSIONS This study identified acute circulatory dysfunction and performance of drainage as independent predictive factors for 30-day AB-related mortality and revealed the existence of a fulminant AB sub-phenotype. Our findings could serve as a practical guide to predict the clinical outcomes of AB.
Collapse
Affiliation(s)
- Kentaro Nagaoka
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - N Iwanaga
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Y Takegoshi
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Y Murai
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama, 930-0194, Japan
| | - H Kawasuji
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama, 930-0194, Japan
| | - M Miura
- Department of Infection Control, Toyama Nishi General Hospital, Toyama, Japan
| | - Y Sato
- Department of Infection Control, Kamiichi General Hospital, Toyama, Japan
| | - Y Hatakeyama
- Department of Infection Control, Takaoka City Hospital, Toyama, Japan
| | - H Ito
- Department of Infection Control, Takaoka City Hospital, Toyama, Japan
| | - Y Kato
- Department of Infection Control, Toyama City Hospital, Toyama, Japan
| | - N Shibayama
- Department of Infection Control, Toyama City Hospital, Toyama, Japan
| | - Y Terasaki
- Department of Infection Control, Toyama City Hospital, Toyama, Japan
| | - T Fujimura
- Department of Infection Control, Toyama City Hospital, Toyama, Japan
| | - T Takazono
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - K Kosai
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - A Sugano
- Center for Clinical Research, Toyama University Hospital, Toyama, Japan
| | - Y Morinaga
- Department of Microbiology, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - K Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - H Mukae
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Y Yamamoto
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
2
|
He S, Chen Y, Wang L, Bai X, Bu T, Zhang J, Lu M, Ha NC, Quan C, Nam KH, Xu Y. Structural and Functional Analysis of the Pyridoxal Phosphate Homeostasis Protein YggS from Fusobacterium nucleatum. Molecules 2022; 27:molecules27154781. [PMID: 35897955 PMCID: PMC9332261 DOI: 10.3390/molecules27154781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Pyridoxal 5′-phosphate (PLP) is the active form of vitamin B6, but it is highly reactive and poisonous in its free form. YggS is a PLP-binding protein found in bacteria and humans that mediates PLP homeostasis by delivering PLP to target enzymes or by performing a protective function. Several biochemical and structural studies of YggS have been reported, but the mechanism by which YggS recognizes PLP has not been fully elucidated. Here, we report a functional and structural analysis of YggS from Fusobacterium nucleatum (FnYggS). The PLP molecule could bind to native FnYggS, but no PLP binding was observed for selenomethionine (SeMet)-derivatized FnYggS. The crystal structure of FnYggS showed a type III TIM barrel fold, exhibiting structural homology with several other PLP-dependent enzymes. Although FnYggS exhibited low (<35%) amino acid sequence similarity with previously studied YggS proteins, its overall structure and PLP-binding site were highly conserved. In the PLP-binding site of FnYggS, the sulfate ion was coordinated by the conserved residues Ser201, Gly218, and Thr219, which were positioned to provide the binding moiety for the phosphate group of PLP. The mutagenesis study showed that the conserved Ser201 residue in FnYggS was the key residue for PLP binding. These results will expand the knowledge of the molecular properties and function of the YggS family.
Collapse
Affiliation(s)
- Shanru He
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China; (S.H.); (Y.C.); (L.W.); (X.B.); (T.B.); (J.Z.)
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Yuanyuan Chen
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China; (S.H.); (Y.C.); (L.W.); (X.B.); (T.B.); (J.Z.)
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Lulu Wang
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China; (S.H.); (Y.C.); (L.W.); (X.B.); (T.B.); (J.Z.)
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Xue Bai
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China; (S.H.); (Y.C.); (L.W.); (X.B.); (T.B.); (J.Z.)
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Tingting Bu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China; (S.H.); (Y.C.); (L.W.); (X.B.); (T.B.); (J.Z.)
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Jie Zhang
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China; (S.H.); (Y.C.); (L.W.); (X.B.); (T.B.); (J.Z.)
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Ming Lu
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China;
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul 00826, Korea;
| | - Chunshan Quan
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China; (S.H.); (Y.C.); (L.W.); (X.B.); (T.B.); (J.Z.)
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Correspondence: (C.Q.); (K.H.N.); (Y.X.)
| | - Ki Hyun Nam
- Department of Life Science, Pohang University of Science and Technology, Pohang 37673, Korea
- POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 37673, Korea
- Correspondence: (C.Q.); (K.H.N.); (Y.X.)
| | - Yongbin Xu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China; (S.H.); (Y.C.); (L.W.); (X.B.); (T.B.); (J.Z.)
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Correspondence: (C.Q.); (K.H.N.); (Y.X.)
| |
Collapse
|
3
|
Endocarditis por Fusobacterium nucleatum. REVISTA COLOMBIANA DE CARDIOLOGÍA 2017. [DOI: 10.1016/j.rccar.2017.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
4
|
Kumar A, Thotakura PL, Tiwary BK, Krishna R. Target identification in Fusobacterium nucleatum by subtractive genomics approach and enrichment analysis of host-pathogen protein-protein interactions. BMC Microbiol 2016; 16:84. [PMID: 27176600 PMCID: PMC4866016 DOI: 10.1186/s12866-016-0700-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 05/06/2016] [Indexed: 02/07/2023] Open
Abstract
Background Fusobacterium nucleatum, a well studied bacterium in periodontal diseases, appendicitis, gingivitis, osteomyelitis and pregnancy complications has recently gained attention due to its association with colorectal cancer (CRC) progression. Treatment with berberine was shown to reverse F. nucleatum-induced CRC progression in mice by balancing the growth of opportunistic pathogens in tumor microenvironment. Intestinal microbiota imbalance and the infections caused by F. nucleatum might be regulated by therapeutic intervention. Hence, we aimed to predict drug target proteins in F. nucleatum, through subtractive genomics approach and host-pathogen protein-protein interactions (HP-PPIs). We also carried out enrichment analysis of host interacting partners to hypothesize the possible mechanisms involved in CRC progression due to F. nucleatum. Results In subtractive genomics approach, the essential, virulence and resistance related proteins were retrieved from RefSeq proteome of F. nucleatum by searching against Database of Essential Genes (DEG), Virulence Factor Database (VFDB) and Antibiotic Resistance Gene-ANNOTation (ARG-ANNOT) tool respectively. A subsequent hierarchical screening to identify non-human homologous, metabolic pathway-independent/pathway-specific and druggable proteins resulted in eight pathway-independent and 27 pathway-specific druggable targets. Co-aggregation of F. nucleatum with host induces proinflammatory gene expression thereby potentiates tumorigenesis. Hence, proteins from IBDsite, a database for inflammatory bowel disease (IBD) research and those involved in colorectal adenocarcinoma as interpreted from The Cancer Genome Atlas (TCGA) were retrieved to predict drug targets based on HP-PPIs with F. nucleatum proteome. Prediction of HP-PPIs exhibited 186 interactions contributed by 103 host and 76 bacterial proteins. Bacterial interacting partners were accounted as putative targets. And enrichment analysis of host interacting partners showed statistically enriched terms that were in positive correlation with CRC, atherosclerosis, cardiovascular, osteoporosis, Alzheimer’s and other diseases. Conclusion Subtractive genomics analysis provided a set of target proteins suggested to be indispensable for survival and pathogenicity of F. nucleatum. These target proteins might be considered for designing potent inhibitors to abrogate F. nucleatum infections. From enrichment analysis, it was hypothesized that F. nucleatum infection might enhance CRC progression by simultaneously regulating multiple signaling cascades which could lead to up-regulation of proinflammatory responses, oncogenes, modulation of host immune defense mechanism and suppression of DNA repair system. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0700-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amit Kumar
- Centre for Bioinformatics, Pondicherry University, Puducherry, 605014, India
| | | | - Basant Kumar Tiwary
- Centre Head, Centre for Bioinformatics, Pondicherry University, Puducherry, 605014, India
| | - Ramadas Krishna
- Centre for Bioinformatics, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
5
|
Peng Q, Yang Y, Guo Y, Han Y. Analysis of Bacterial Diversity During Acetic Acid Fermentation of Tianjin Duliu Aged Vinegar by 454 Pyrosequencing. Curr Microbiol 2015; 71:195-203. [DOI: 10.1007/s00284-015-0823-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/01/2015] [Indexed: 11/30/2022]
|
6
|
Ahmed Z, Bansal SK, Dhillon S. Pyogenic liver abscess caused by Fusobacterium in a 21-year-old immunocompetent male. World J Gastroenterol 2015; 21:3731-3735. [PMID: 25834342 PMCID: PMC4375599 DOI: 10.3748/wjg.v21.i12.3731] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/04/2014] [Accepted: 12/01/2014] [Indexed: 02/06/2023] Open
Abstract
A 21-year-old male with no significant past medical history, presented with right upper quadrant (RUQ) abdominal pain along with fevers and chills. Lab work revealed leukocytosis, anemia, and slightly elevated alkaline phosphatase. Viral serology for hepatitis B virus, hepatitis C virus, and human immunodeficiency virus were negative and he was immunocompetent. Computed tomography imaging revealed hepatic abscesses, the largest measuring 9.5 cm. Empiric antibiotics were started and percutaneous drains were placed in the abscesses. Anaerobic cultures from the abscesses grew Fusobacterium nucleatum. This is a gram negative anaerobic bacteria; a normal flora of the oral cavity. Fusobacterium is most commonly seen in Lemiere’s disease, which is translocation of oral bacteria to the internal jugular vein causing a thrombophlebitis and subsequent spread of abscesses. Our patient did not have Lemiere’s, and is the first case described of fusobacterium pyogenic liver abscess in a young immunocompetent male with good oral hygiene. This case was complicated by sepsis, empyema, and subsequent abscesses located outside the liver. These abscesses’ have the propensity to flare abruptly and can be fatal. This case not only illustrates fusobacterium as a rare entity for pyogenic liver abscess, but also the need for urgent diagnosis and treatment. It is incumbent on physicians to diagnose and drain any suspicious hepatic lesions. While uncommon, such infections may develop without any overt source and can progress rapidly. Prompt drainage with antibiotic therapy remains the cornerstone of therapy.
Collapse
|