1
|
Zakaria N, El-Sayed ASA, Ali MG. Phytochemical fingerprinting of phytotoxins as a cutting-edge approach for unveiling nature's secrets in forensic science. NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:1. [PMID: 39747712 PMCID: PMC11695570 DOI: 10.1007/s13659-024-00484-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/11/2024] [Indexed: 01/04/2025]
Abstract
The integration of phytochemistry into forensic science has emerged as a groundbreaking frontier, providing unprecedented insights into nature's secrets through the precise application of phytochemical fingerprinting of phytotoxins as a cutting-edge approach. This study explores the dynamic intersection of phytochemistry and forensic science, highlighting how the unique phytochemical profiles of toxic plants and their secondary metabolites, serve as distinctive markers for forensic investigations. By utilizing advanced techniques such as Ultra-High-Performance Liquid Chromatography (UHPLC) and High-Resolution Mass Spectrometry (HRMS), the detection and quantification of plant-derived are made more accurate in forensic contexts. Real-world case studies are presented to demonstrate the critical role of plant toxins in forensic outcomes and legal proceedings. The challenges, potential, and future prospects of integrating phytochemical fingerprinting of plant toxins into forensic science were discussed. This review aims to illuminate phytochemical fingerprinting of plant toxins as a promising tool to enhance the precision and depth of forensic analyses, offering new insights into the complex stories embedded in plant toxins.
Collapse
Affiliation(s)
- Nabil Zakaria
- Phytochemistry lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Zagazig, Egypt
| | - Mostafa G Ali
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13518, Egypt.
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Oliveira M, Azevedo L, Ballard D, Branicki W, Amorim A. Using plants in forensics: State-of-the-art and prospects. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111860. [PMID: 37683985 DOI: 10.1016/j.plantsci.2023.111860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
The increasing use of plant evidence in forensic investigations gave rise to a powerful new discipline - Forensic Botany - that analyses micro- or macroscopic plant materials, such as the totality or fragments of an organ (i.e., leaves, stems, seeds, fruits, roots) and tissue (i.e., pollen grains, spores, fibers, cork) or its chemical composition (i. e., secondary metabolites, isotopes, DNA, starch grains). Forensic botanists frequently use microscopy, chemical analysis, and botanical expertise to identify and interpret evidence crucial to solving civil and criminal issues, collaborating in enforcing laws or regulations, and ensuring public health safeguards. The present work comprehensively examines the current state and future potential of Forensic Botany. The first section conveys the critical steps of plant evidence collection, documentation, and preservation, emphasizing the importance of these initial steps in maintaining the integrity of the items. It explores the different molecular analyses, covering the identification of plant species and varieties or cultivars, and discusses the limitations and challenges of these techniques in forensics. The subsequent section covers the diversity of Forensic Botany approaches, examining how plant evidence exposes food and pharmaceutical frauds, uncovers insufficient or erroneous labeling, traces illegal drug trafficking routes, and combats the illegal collection or trade of protected species and derivatives. National and global security issues, including the implications of biological warfare, bioterrorism, and biocrime are addressed, and a review of the contributions of plant evidence in crime scene investigations is provided, synthesizing a comprehensive overview of the diverse facets of Forensic Botany.
Collapse
Affiliation(s)
- Manuela Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.
| | - Luísa Azevedo
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - David Ballard
- King's Forensics, King's College London, London, United Kingdom
| | - Wojciech Branicki
- Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland; Institute of Forensic Research, Kraków, Poland
| | - Antonio Amorim
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; FCUP - Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
3
|
Szalewski DA, Hinrichs VS, Zinniel DK, Barletta RG. The pathogenicity ofAspergillus fumigatus, drug resistance, and nanoparticle delivery. Can J Microbiol 2018; 64:439-453. [DOI: 10.1139/cjm-2017-0749] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The genus Aspergillus includes fungal species that cause major health issues of significant economic importance. These microorganisms are also the culprit for production of carcinogenic aflatoxins in grain storages, contaminating crops, and economically straining the production process. Aspergillus fumigatus is a very important pathogenic species, being responsible for high human morbidity and mortality on a global basis. The prevalence of these infections in immunosuppressed individuals is on the rise, and physicians struggle with the diagnosis of these deadly pathogens. Several virulence determinants facilitate fungal invasion and evasion of the host immune response. Metabolic functions are also important for virulence and drug resistance, since they allow fungi to obtain nutrients for their own survival and growth. Following a positive diagnostic identification, mortality rates remain high due, in part, to emerging resistance to frequently used antifungal drugs. In this review, we discuss the role of the main virulence, drug target, and drug resistance determinants. We conclude with the review of new technologies being developed to treat aspergillosis. In particular, microsphere and nanoparticle delivery systems are discussed in the context of improving drug bioavailability. Aspergillus will likely continue to cause problematic infections in immunocompromised patients, so it is imperative to improve treatment options.
Collapse
Affiliation(s)
- David A. Szalewski
- Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE 68583-0726, USA
- Department of Microbiology, University of Nebraska, Lincoln, NE 68588-0664, USA
| | - Victoria S. Hinrichs
- College of Agricultural Sciences and Natural Resources, University of Nebraska, Lincoln, NE 68583-0702, USA
| | - Denise K. Zinniel
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583-0905, USA
| | - Raúl G. Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583-0905, USA
| |
Collapse
|
4
|
Oliveira M, Arenas M, Lage O, Cunha M, Amorim MI. Epiphytic fungal community in Vitis vinifera of the Portuguese wine regions. Lett Appl Microbiol 2017; 66:93-102. [PMID: 29139139 DOI: 10.1111/lam.12826] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/07/2017] [Accepted: 11/02/2017] [Indexed: 02/02/2023]
Abstract
In this work, fungi present in the grapevine's phyllosphere collected from the main demarcated wine regions of Portugal were identified, and their phylogenetic relationships were analysed. A total of 46 vine samples (leaves and berries) were collected from different parts of the country, being isolated a total of 117 fungal colonies that were identified to the genus level and sequenced in the following genetic regions: internal transcribed spacer region and 18S rRNA and β-tubulin gene. Next, a phylogenetic tree reconstruction for each genetic region was built. The isolates retrieved from environmental samples belonged to the genera Alternaria (31%), Cladosporium (21%), Penicillium (19%), Aspergillus (7%) and Epicoccum (3%). No genetic signatures of exchange of genetic material were detected, and consequently, the reconstructed phylogenetic trees allowed to distinguish between these different species/genera. In the fungal composition of the Vitis vinifera phyllosphere, several potential pathogens were identified that can be associated with decreases in crop productivity. Knowledge of fungi identification and genetic diversity is pivotal for the development of more adequate crop management strategies. Furthermore, this information will provide guidelines for a more specific and wiser use of fungicides. SIGNIFICANCE AND IMPACT OF THE STUDY The knowledge on the composition of the phyllosphere microbial community is still limited, especially when fungi are concerned. These micro-organisms not only play a crucial role in crop health and productivity but also interact with the winemaking process, determining the safety and quality of grape and grape-derived products. The elucidation of the micro-organisms present in the phyllosphere will have a notorious impact on plant breeding and protection programmes and disease management strategies, allowing a better control of pesticide applications.
Collapse
Affiliation(s)
- M Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - M Arenas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | - O Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - M Cunha
- Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - M I Amorim
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.,BioISI - Plant Functional Genomics Group, Biosystems and Integrative Sciences Institute, Porto, Portugal
| |
Collapse
|
5
|
Current Approaches Towards Development of Molecular Markers in Diagnostics of Invasive Aspergillosis. Fungal Biol 2017. [DOI: 10.1007/978-3-319-34106-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Development and Evaluation of a Loop-Mediated Isothermal Amplification Method for Rapid Detection of Aspergillus fumigatus. J Clin Microbiol 2016; 54:950-5. [PMID: 26791368 DOI: 10.1128/jcm.01751-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 01/03/2016] [Indexed: 01/04/2023] Open
Abstract
Aspergillus fumigatusis a conditional pathogen and the major cause of life-threatening invasive aspergillosis (IA) in immunocompromised patients. The early and rapid detection ofA. fumigatusinfection is still a major challenge. In this study, the new member of the fungal annexin family, annexin C4, was chosen as the target to design a loop-mediated isothermal amplification (LAMP) assay for the rapid, specific, and sensitive detection ofA. fumigatus The evaluation of the specificity of the LAMP assay that was developed showed that no false-positive results were observed for the 22 non-A. fumigatusstrains, including 5 species of theAspergillusgenus. Its detection limit was approximately 10 copies per reaction in reference plasmids, with higher sensitivity than that of real-time quantitative PCR (qPCR) at 10(2)copies for the same target. Clinical samples from a total of 69 patients with probable IA (n =14) and possible IA (n= 55) were subjected to the LAMP assay, and positive results were found for the 14 patients with probable IA (100%) and 34 patients with possible IA (61.82%). When detection using the LAMP assay was compared with that using qPCR in the 69 clinical samples, the LAMP assay demonstrated a sensitivity of 89.19% and the concordance rate for the two methods was 72.46%. Accordingly, we report that a valuable LAMP assay for the rapid, specific, and simple detection ofA. fumigatusin clinical testing has been developed.
Collapse
|
7
|
Araujo R, Gungor O, Amorim A. Single-tube PCR coupled with mini-sequencing assay for the detection of cyp51A and cyp51B polymorphisms in Aspergillus fumigatus. Future Microbiol 2015; 10:1797-804. [PMID: 26515651 DOI: 10.2217/fmb.15.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Triazole resistance in Aspergillus fumigatus is associated with mutations in cyp51 genes, therefore, a single-tube multiplex PCR was proposed for rapid detection of such mutations. METHODS Relevant markers (n = 21) located in cyp51A and cyp51B were amplified in a multiplex reaction and subsequently analyzed by mini-sequencing. RESULTS A set of nonresistant A. fumigatus were tested. The markers F46, G89, M172, D255, L358, E427 and C454 located in cyp51A, as well as P394 and S35 from cyp51B, were found to be modified. CONCLUSIONS A. fumigatus triazole resistance in Portugal is rare, nevertheless, some isolates showed alterations in the cyp51 genes. Multicenter studies with more isolates should better evaluate and validate the potential use of this method in clinical laboratories. The new methodology allows the addition of extra markers if described as relevant for A. fumigatus susceptibility to triazoles.
Collapse
Affiliation(s)
- Ricardo Araujo
- IPATIMUP, Institute of Molecular Pathology & Immunology of the University of Porto, Rua Dr Roberto Frias s/n, 4200-465 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Ozge Gungor
- IPATIMUP, Institute of Molecular Pathology & Immunology of the University of Porto, Rua Dr Roberto Frias s/n, 4200-465 Porto, Portugal.,Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Millet Street 34093, Istanbul, Turkey
| | - António Amorim
- IPATIMUP, Institute of Molecular Pathology & Immunology of the University of Porto, Rua Dr Roberto Frias s/n, 4200-465 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal.,Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
8
|
Kulik T, Ostrowska A, Buśko M, Pasquali M, Beyer M, Stenglein S, Załuski D, Sawicki J, Treder K, Perkowski J. Development of an FgMito assay: A highly sensitive mitochondrial based qPCR assay for quantification of Fusarium graminearum sensu stricto. Int J Food Microbiol 2015; 210:16-23. [DOI: 10.1016/j.ijfoodmicro.2015.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 05/29/2015] [Accepted: 06/11/2015] [Indexed: 11/26/2022]
|
9
|
Feasibility of mini-sequencing schemes based on nucleotide polymorphisms for microbial identification and population analyses. Appl Microbiol Biotechnol 2015; 99:2513-21. [DOI: 10.1007/s00253-015-6427-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 11/26/2022]
|