1
|
Di Conza J, Badaracco ME, Calza Y, Fontana H, Lincopan N, Peña L, Gutkind G. Emergence of Urease-Negative Klebsiella pneumoniae ST340 Carrying an IncP6 Plasmid-Mediated blaKPC-2 Gene. Microb Drug Resist 2022; 28:957-961. [PMID: 35984997 DOI: 10.1089/mdr.2021.0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
An unusual biotype of KPC-2-producing Klebsiella pneumoniae (KPC-Kpn) isolates was detected in Corrientes, Argentina, which, to their isolation date, had been free of KPC-Kpn outbreaks. Our aim was to describe the clinical epidemiology focused on genomic characterization of atypical urease-negative KPC-Kpn clinical isolates belonging to the high-risk hospital-associated clonal lineage ST340/CC258. Thirteen isolates were recovered, all of them from inpatients with KPC-Kpn infection (August 2015 to January 2016). These isolates displayed identical enterobacterial repetitive intergenic consensus-PCR electropherotype belonging to a single clonal sequence type ST340. Whole genome sequencing was performed on two KPC-Kpn and the resistome analyses revealed the following acquired resistance genes: blaKPC-2, blaCTX-M-15, blaOXA-1, blaSHV-11, aac(3)-IId, aph(3')-Ia, aac(6')-Ib-cr, sul1, dfrA14, catB3, fosA, and arr-3. Mutations in GyrA (S83I) and ParC (S80I) were also identified. Among the virulence determinants, yersiniabactin was detected in both strains, specifically the ybt9 locus located in ICEKp3. Five plasmid incompatibility groups were observed in this clone and an unusual IncP6 plasmid bearing blaKPC-2 gene (named pKpn3KP) was fully characterized. In this study, we present the first draft genome sequences of two clinical isolates of KPC-2/CTX-M-15-producing K. pneumoniae belonging to the high-risk clonal lineage ST340/CC258 associated with nosocomial outbreaks in Argentina.
Collapse
Affiliation(s)
- José Di Conza
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Maria E Badaracco
- Instituto Cardiologico de Corrientes "Juana Francisca Cabral," Corrientes, Argentina
| | - Yanina Calza
- Instituto Cardiologico de Corrientes "Juana Francisca Cabral," Corrientes, Argentina
| | - Herrison Fontana
- Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo, Brazil
| | - Nilton Lincopan
- Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo, Brazil
| | - Laura Peña
- Instituto Cardiologico de Corrientes "Juana Francisca Cabral," Corrientes, Argentina
| | - Gabriel Gutkind
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
2
|
Salgueiro V, Manageiro V, Bandarra NM, Reis L, Ferreira E, Caniça M. Bacterial Diversity and Antibiotic Susceptibility of Sparus aurata from Aquaculture. Microorganisms 2020; 8:E1343. [PMID: 32887439 PMCID: PMC7564983 DOI: 10.3390/microorganisms8091343] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/02/2023] Open
Abstract
In a world where the population continues to increase and the volume of fishing catches stagnates or even falls, the aquaculture sector has great growth potential. This study aimed to contribute to the depth of knowledge of the diversity of bacterial species found in Sparus aurata collected from a fish farm and to understand which profiles of diminished susceptibility to antibiotics would be found in these bacteria that might be disseminated in the environment. One hundred thirty-six bacterial strains were recovered from the S. aurata samples. These strains belonged to Bacillaceae, Bacillales Family XII. Incertae Sedis, Comamonadaceae, Enterobacteriaceae, Enterococcaceae, Erwiniaceae, Micrococcaceae, Pseudomonadaceae and Staphylococcaceae families. Enterobacter sp. was more frequently found in gills, intestine and skin groups than in muscle groups (p ≤ 0.01). Antibiotic susceptibility tests found that non-susceptibility to phenicols was significantly higher in gills, intestine and skin samples (45%) than in muscle samples (24%) (p ≤ 0.01) and was the most frequently found non-susceptibility in both groups of samples. The group of Enterobacteriaceae from muscles presented less decreased susceptibility to florfenicol (44%) than in the group of gills, intestine and skin samples (76%). We found decreased susceptibilities to β-lactams and glycopeptides in the Bacillaceae family, to quinolones and mupirocin in the Staphylococcaceae family, and mostly to β-lactams, phenicols and quinolones in the Enterobacteriaceae and Pseudomonadaceae families. Seven Enterobacter spp. and five Pseudomonas spp. strains showed non-susceptibility to ertapenem and meropenem, respectively, which is of concern because they are antibiotics used as a last resort in serious clinical infections. To our knowledge, this is the first description of species Exiguobacterium acetylicum, Klebsiella michiganensis, Lelliottia sp. and Pantoea vagans associated with S. aurata (excluding cases where these bacteria are used as probiotics) and of plasmid-mediated quinolone resistance qnrB19-producing Leclercia adecarboxylata strain. The non-synonymous G385T and C402A mutations at parC gene (within quinolone resistance-determining regions) were also identified in a Klebsiella pneumoniae, revealing decreased susceptibility to ciprofloxacin. In this study, we found not only bacteria from the natural microbiota of fish but also pathogenic bacteria associated with fish and humans. Several antibiotics for which decreased susceptibility was found here are integrated into the World Health Organization list of "critically important antimicrobials" and "highly important antimicrobials" for human medicine.
Collapse
Affiliation(s)
- Vanessa Salgueiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR-HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (V.S.); (V.M.); (L.R.); (E.F.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR-HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (V.S.); (V.M.); (L.R.); (E.F.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - Narcisa M. Bandarra
- Department of Sea and Marine Resources, Portuguese Institute for the Sea and Atmosphere (IPMA, IP), 1749-077 Lisbon, Portugal;
| | - Lígia Reis
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR-HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (V.S.); (V.M.); (L.R.); (E.F.)
| | - Eugénia Ferreira
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR-HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (V.S.); (V.M.); (L.R.); (E.F.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR-HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (V.S.); (V.M.); (L.R.); (E.F.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| |
Collapse
|
3
|
Monte DF, Lincopan N, Berman H, Cerdeira L, Keelara S, Thakur S, Fedorka-Cray PJ, Landgraf M. Genomic Features of High-Priority Salmonella enterica Serovars Circulating in the Food Production Chain, Brazil, 2000-2016. Sci Rep 2019; 9:11058. [PMID: 31363103 PMCID: PMC6667439 DOI: 10.1038/s41598-019-45838-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/11/2019] [Indexed: 11/09/2022] Open
Abstract
Multidrug-resistant (MDR) Salmonella enterica has been deemed a high-priority pathogen by the World Health Organization. Two hundred and sixty-four Salmonella enterica isolates recovered over a 16-year period (2000 to 2016) from the poultry and swine production chains, in Brazil, were investigated by whole-genome sequencing (WGS). Most international lineages belonging to 28 serovars, including, S. enterica serovars S. Schwarzengrund ST96, S. Typhimurium ST19, S. Minnesota ST548, S. Infantis ST32, S. Heidelberg ST15, S. Newport ST45, S. Brandenburg ST65 and S. Kentucky ST198 displayed MDR and virulent genetic backgrounds. In this regard, resistome analysis revealed presence of qnrE1 (identified for the first time in S. Typhimurium from food chain), qnrB19, qnrS1, blaCTX-M-8, blaCTX-M-2 and blaCMY-2 genes, as well as gyrA mutations; whereas ColpVC, IncHI2A, IncHI2, IncFIA, Incl1, IncA/C2, IncR, IncX1 and po111 plasmids were detected. In addition, phylogenetic analysis revealed multiple independent lineages such as S. enterica serovars S. Infantis, S. Schwarzengrund, S. Minnesota, S. Kentucky and S. Brandenburg. In brief, ocurrence and persistence of international lineages of S. enterica serovars in food production chain is supported by conserved genomes and wide virulome and resistome.
Collapse
Affiliation(s)
- Daniel F Monte
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center, University of São Paulo, São Paulo, Brazil. .,Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, USA.
| | - Nilton Lincopan
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Hanna Berman
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, USA
| | - Louise Cerdeira
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Shivaramu Keelara
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, USA
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, USA
| | - Paula J Fedorka-Cray
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, USA
| | - Mariza Landgraf
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
4
|
Tolentino FM, Bueno MFC, Franscisco GR, Barcelos DDDP, Lobo SM, Tomaz FMMB, da Silva NS, de Andrade LN, Casella T, Darini ALDC, Polotto M, de Oliveira Garcia D, Nogueira MCL. Endemicity of the High-Risk Clone Klebsiella pneumoniae ST340 Coproducing QnrB, CTX-M-15, and KPC-2 in a Brazilian Hospital. Microb Drug Resist 2019; 25:528-537. [DOI: 10.1089/mdr.2018.0006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Fernanda Modesto Tolentino
- Instituto Adolfo Lutz, São José do Rio Preto, Brazil
- Universidade Estadual Paulista “Júlio de Mesquita Filho,” São José do Rio Preto, Brazil
- Centro de Investigação de Microrganismos - Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | | | | | - Diego Diniz de Paula Barcelos
- Centro de Investigação de Microrganismos - Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | - Suzana Margareth Lobo
- Centro de Investigação de Microrganismos - Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | - Francieli Maira Moreira Batista Tomaz
- Centro de Investigação de Microrganismos - Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | - Natal Santos da Silva
- Centro de Investigação de Microrganismos - Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
- Laboratório de Modelagens Matemática e Estatística em Medicina, União das Faculdades dos Grandes Lagos, São José do Rio Preto, São Paulo, Brazil
| | - Leonardo Neves de Andrade
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Tiago Casella
- Centro de Investigação de Microrganismos - Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
- Setor de Microbiologia Clínica, Laboratório Central, Hospital de Base, São José do Rio Preto, Brazil
| | - Ana Lucia da Costa Darini
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Milena Polotto
- Instituto Adolfo Lutz, São José do Rio Preto, Brazil
- Centro de Investigação de Microrganismos - Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | | | - Mara Correa Lelles Nogueira
- Centro de Investigação de Microrganismos - Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| |
Collapse
|
5
|
Anes J, Hurley D, Martins M, Fanning S. Exploring the Genome and Phenotype of Multi-Drug Resistant Klebsiella pneumoniae of Clinical Origin. Front Microbiol 2017; 8:1913. [PMID: 29109700 PMCID: PMC5660112 DOI: 10.3389/fmicb.2017.01913] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/20/2017] [Indexed: 11/16/2022] Open
Abstract
Klebsiella pneumoniae is an important nosocomial pathogen with an extraordinary resistant phenotype due to a combination of acquired resistant-elements and efflux mechanisms. In this study a detailed molecular characterization of 11 K. pneumoniae isolates of clinical origin was carried out. Eleven clinical isolates were tested for their susceptibilities, by disk diffusion and broth microdilution and interpreted according to CLSI guidelines. Efflux activity was determined by measuring the extrusion of ethidium bromide and biofilm formation was assessed following static growth in Müeller-Hinton and minimal media M9 broths at two temperatures and time points. Template DNA from all 11 isolates was extracted and sequenced. The study collection was found to be resistant to several (extended-spectrum beta-lactam) ESBL-type compounds along with several (fluoro)quinolones (FQ). Resistance to tetracycline accounted for 55% of the study collection (n = 6) and three of the 11 isolates were resistance to carbapenems. Genotyping identified blaCTX-M-15 (82%), blaSHV-12 (55%), and blaTEM-1B (45%) ESBL encoding genes and FQ resistance was associated the presence of the oqxAB operon, identified in 10 of the 11 isolates and qnrB gene in one isolate. The polymorphisms detected in the quinolone resistance-determining regions (QRDRs) were associated with isolates of the clonal group CG15. Sequence types (ST) identified were representative of previously described clonal groups including CG258 (n = 7), CG15 (n = 3), and CG147 (n = 1). Plasmid replicon type databases were queried indicating the presence of IncFII and IncFIB replicon types in the majority of the isolates (91%), followed by IncFIA (45%), and IncR (45%). Two of the 11 isolates were found positive for yersiniabactin siderophore-encoding genes. No differences in the ability to efflux ethidium bromide were identified. Biofilm formation was stronger when the isolates were grown under stressed conditions at 37°C for a period up to 96 h. These data confirm the fact that well-recognized clonal groups of K. pneumoniae of importance to human health carries a diverse repertoire of antimicrobial resistance determinants, particularly related to critically important drugs in the ESBL and FQ classes. The capacity of most isolates to form strong biofilms, when stressed under laboratory-simulated conditions, supports the risk to human health associated with nosocomial infections deriving from indwelling medical devices.
Collapse
Affiliation(s)
- João Anes
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Daniel Hurley
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Marta Martins
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
6
|
Bialek-Davenet S, Mayer N, Vergalli J, Duprilot M, Brisse S, Pagès JM, Nicolas-Chanoine MH. In-vivo loss of carbapenem resistance by extensively drug-resistant Klebsiella pneumoniae during treatment via porin expression modification. Sci Rep 2017; 7:6722. [PMID: 28751669 PMCID: PMC5532282 DOI: 10.1038/s41598-017-06503-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/16/2017] [Indexed: 02/07/2023] Open
Abstract
Klebsiella pneumoniae, an Enterobacteriaceae that mostly causes hospital-acquired infections, belongs to the recently published WHO's list of antibiotic-resistant pathogens that pose the greatest threat to human health. Indeed, K. pneumoniae is the enterobacterial species most concerned by both resistance to extended-spectrum cephalosporins, due to extended-spectrum β-lactamase (ESBL) production, and resistance to carbapenems, i.e. the β-lactams with the broadest activity. Carbapenem resistance is related not only to carbapenemase production, but also the production of ESBL or AmpC and the loss of general porins. Here, we characterized the mechanisms that deprived a urinary ESBL-producing, porin-deficient K. pneumoniae isolate, isolated 13 days after the end of a 40-day course of imipenem treatment, of its carbapenem resistance. These mechanisms were observed in two in-vivo derivatives of this isolate and consisted of mutations in genes encoding molecules that participate in the downregulation of the synthesis of PhoE, a porin specialized in phosphate transport. We obtained three new derivatives from one of the two original derivatives, following in-vitro antibiotic pressure, in which the carbapenem resistance was restored because of mutations in genes encoding molecules that participate in the upregulation of PhoE synthesis. Thus, we uncovered novel mechanisms of carbapenem resistance/susceptibility switching in K. pneumoniae.
Collapse
Affiliation(s)
| | - Noémie Mayer
- Service de Microbiologie, Hôpital Beaujon, AP-HP, Clichy, France
| | | | - Marion Duprilot
- Faculté de Médecine Paris Diderot, Paris, France.,Service de Microbiologie, Hôpital Beaujon, AP-HP, Clichy, France.,INSERM UMR 1137, Université Paris 7, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Génomique Evolutive des Microbes, Paris, France
| | | | - Marie-Hélène Nicolas-Chanoine
- Faculté de Médecine Paris Diderot, Paris, France. .,Service de Microbiologie, Hôpital Beaujon, AP-HP, Clichy, France. .,INSERM UMR 1137, Université Paris 7, Paris, France.
| |
Collapse
|
7
|
Cerdeira LT, Cunha MPV, Francisco GR, Bueno MFC, Araujo BF, Ribas RM, Gontijo-Filho PP, Knöbl T, de Oliveira Garcia D, Lincopan N. IncX3 plasmid harboring a non-Tn4401 genetic element (NTE KPC) in a hospital-associated clone of KPC-2-producing Klebsiella pneumoniae ST340/CG258. Diagn Microbiol Infect Dis 2017; 89:164-167. [PMID: 28807400 DOI: 10.1016/j.diagmicrobio.2017.06.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 01/21/2023]
Abstract
IncX-type plasmids have achieved clinical significance for their contribution in the dissemination of genes confering resistance to carbapenems (most blaKPC- and blaNDM-type genes) and polymyxins (mcr-type genes), both antibiotics considered last resort for multidrug-resistant Gram-negative infections. In this study, we report the identification and complete sequence analysis of an IncX3 plasmid (designated pKP1194a) carrying a non-Tn4401 genetic element (NTEKPC) of tnpR-tnpA (partial)-blaKPC-2-ΔISKpn6/traN, originating from a hospital-associated lineage of K. pneumoniae belonging to the ST340/CG258, with epidemiological link to Brazil.
Collapse
Affiliation(s)
- Louise T Cerdeira
- Department of Clinical Analysis, School of Pharmacy, Universidade de São Paulo, São Paulo, Brazil
| | - Marcos P V Cunha
- School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | | | | | - Bruna F Araujo
- Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Rosineide M Ribas
- Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Paulo P Gontijo-Filho
- Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Terezinha Knöbl
- School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Nilton Lincopan
- Department of Clinical Analysis, School of Pharmacy, Universidade de São Paulo, São Paulo, Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
8
|
de Maio Carrillho CM, Gaudereto JJ, Martins RCR, de Castro Lima VAC, de Oliveira LM, Urbano MR, Perozin JS, Levin AS, Costa SF. Colistin-resistant Enterobacteriaceae infections: clinical and molecular characterization and analysis of in vitro synergy. Diagn Microbiol Infect Dis 2017; 87:253-257. [DOI: 10.1016/j.diagmicrobio.2016.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 11/06/2016] [Accepted: 11/10/2016] [Indexed: 10/20/2022]
|
9
|
Sampaio JLM, Gales AC. Antimicrobial resistance in Enterobacteriaceae in Brazil: focus on β-lactams and polymyxins. Braz J Microbiol 2016; 47 Suppl 1:31-37. [PMID: 27825605 PMCID: PMC5156504 DOI: 10.1016/j.bjm.2016.10.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 12/22/2022] Open
Abstract
During the last 30 years there has been a dissemination of plasmid-mediated β-lactamases in Enterobacteriaceae in Brazil. Extended spectrum β-lactamases (ESBL) are widely disseminated in the hospital setting and are detected in a lower frequency in the community setting. Cefotaximases are the most frequently detected ESBL type and Klebsiella pneumoniae is the predominant species among ESBL producers. Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae became widely disseminated in Brazil during the last decade and KPC production is currently the most frequent resistance mechanism (96.2%) in carbapenem resistant K. pneumoniae. To date KPC-2 is the only variant reported in Brazil. Polymyxin B resistance in KPC-2-producing K. pneumoniae has come to an alarming rate of 27.1% in 2015 in São Paulo, the largest city in Brazil. New Delhi metallo-β-lactamase was detected in Brazil in 2013, has been reported in different Brazilian states but are not widely disseminated. Antimicrobial resistance in Enterobacteriaceae in Brazil is a very serious problem that needs urgent actions which includes both more strict adherence to infection control measures and more judicious use of antimicrobials.
Collapse
Affiliation(s)
- Jorge Luiz Mello Sampaio
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas e Toxicológicas, São Paulo, SP, Brazil; Fleury Medicina e Saúde, Seção de Microbiologia, São Paulo, SP, Brazil.
| | - Ana Cristina Gales
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina Interna, São Paulo, Brazil.
| |
Collapse
|