1
|
Solis MN, Loaiza K, Torres-Elizalde L, Mina I, Šefcová MA, Larrea-Álvarez M. Detecting Class 1 Integrons and Their Variable Regions in Escherichia coli Whole-Genome Sequences Reported from Andean Community Countries. Antibiotics (Basel) 2024; 13:394. [PMID: 38786123 PMCID: PMC11117327 DOI: 10.3390/antibiotics13050394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Various genetic elements, including integrons, are known to contribute to the development of antimicrobial resistance. Class 1 integrons have been identified in E. coli isolates and are associated with multidrug resistance in countries of the Andean Community. However, detailed information on the gene cassettes located on the variable regions of integrons is lacking. Here, we investigated the presence and diversity of class 1 integrons, using an in silico approach, in 2533 whole-genome sequences obtained from EnteroBase. IntFinder v1.0 revealed that almost one-third of isolates contained these platforms. Integron-bearing isolates were associated with environmental, food, human, and animal origins reported from all countries under scrutiny. Moreover, they were identified in clones known for their pathogenicity or multidrug resistance. Integrons carried cassettes associated with aminoglycoside (aadA), trimethoprim (dfrA), cephalosporin (blaOXA; blaDHA), and fluoroquinolone (aac(6')-Ib-cr; qnrB) resistance. These platforms showed higher diversity and larger numbers than previously reported. Moreover, integrons carrying more than three cassettes in their variable regions were determined. Monitoring the prevalence and diversity of genetic elements is necessary for recognizing emergent patterns of resistance in pathogenic bacteria, especially in countries where various factors are recognized to favor the selection of resistant microorganisms.
Collapse
Affiliation(s)
- María Nicole Solis
- Facultad de Ciencias Médicas Enrique Ortega Moreira, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| | - Karen Loaiza
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, 2300 Copenhagen, Denmark
| | - Lilibeth Torres-Elizalde
- Graduate School Life Sciences and Health (GS LSH), Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Ivan Mina
- School of Biological Science and Engineering, Yachay-Tech University, Urcuquí 100650, Ecuador
| | - Miroslava Anna Šefcová
- Facultad de Ciencias Médicas Enrique Ortega Moreira, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| | - Marco Larrea-Álvarez
- Facultad de Ciencias Médicas Enrique Ortega Moreira, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| |
Collapse
|
2
|
Qi Q, Ghaly TM, Rajabal V, Gillings MR, Tetu SG. Dissecting molecular evolution of class 1 integron gene cassettes and identifying their bacterial hosts in suburban creeks via epicPCR. J Antimicrob Chemother 2024; 79:100-111. [PMID: 37962091 DOI: 10.1093/jac/dkad353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
OBJECTIVES Our study aimed to sequence class 1 integrons in uncultured environmental bacterial cells in freshwater from suburban creeks and uncover the taxonomy of their bacterial hosts. We also aimed to characterize integron gene cassettes with altered DNA sequences relative to those from databases or literature and identify key signatures of their molecular evolution. METHODS We applied a single-cell fusion PCR-based technique-emulsion, paired isolation and concatenation PCR (epicPCR)-to link class 1 integron gene cassette arrays to the phylogenetic markers of their bacterial hosts. The levels of streptomycin resistance conferred by the WT and altered aadA5 and aadA11 gene cassettes that encode aminoglycoside (3″) adenylyltransferases were experimentally quantified in an Escherichia coli host. RESULTS Class 1 integron gene cassette arrays were detected in Alphaproteobacteria and Gammaproteobacteria hosts. A subset of three gene cassettes displayed signatures of molecular evolution, namely the gain of a regulatory 5'-untranslated region (5'-UTR), the loss of attC recombination sites between adjacent gene cassettes, and the invasion of a 5'-UTR by an IS element. Notably, our experimental testing of a novel variant of the aadA11 gene cassette demonstrated that gaining the observed 5'-UTR contributed to a 3-fold increase in the MIC of streptomycin relative to the ancestral reference gene cassette in E. coli. CONCLUSIONS Dissecting the observed signatures of molecular evolution of class 1 integrons allowed us to explain their effects on antibiotic resistance phenotypes, while identifying their bacterial hosts enabled us to make better inferences on the likely origins of novel gene cassettes and IS that invade known gene cassettes.
Collapse
Affiliation(s)
- Qin Qi
- School of Natural Sciences, 14 Eastern Road, Macquarie University, Sydney, NSW, Australia
| | - Timothy M Ghaly
- School of Natural Sciences, 14 Eastern Road, Macquarie University, Sydney, NSW, Australia
| | - Vaheesan Rajabal
- ARC Centre of Excellence for Synthetic Biology, 14 Eastern Road, Macquarie University, Sydney, NSW, Australia
| | - Michael R Gillings
- School of Natural Sciences, 14 Eastern Road, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence for Synthetic Biology, 14 Eastern Road, Macquarie University, Sydney, NSW, Australia
| | - Sasha G Tetu
- School of Natural Sciences, 14 Eastern Road, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence for Synthetic Biology, 14 Eastern Road, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
3
|
European Food Safety Authority (EFSA), European Centre for Disease Prevention and Control (ECDC). The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2020/2021. EFSA J 2023; 21:e07867. [PMID: 36891283 PMCID: PMC9987209 DOI: 10.2903/j.efsa.2023.7867] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Antimicrobial resistance (AMR) data on zoonotic and indicator bacteria from humans, animals and food are collected annually by the EU Member States (MSs) and reporting countries, jointly analysed by EFSA and ECDC and presented in a yearly EU Summary Report. This report provides an overview of the main findings of the 2020-2021 harmonised AMR monitoring in Salmonella spp., Campylobacter jejuni and C. coli in humans and food-producing animals (broilers, laying hens and turkeys, fattening pigs and bovines under 1 year of age) and relevant meat thereof. For animals and meat thereof, indicator E. coli data on the occurrence of AMR and presumptive Extended spectrum β-lactamases (ESBL)-/AmpC β-lactamases (AmpC)-/carbapenemases (CP)-producers, as well as the occurrence of methicillin-resistant Staphylococcus aureus are also analysed. In 2021, MSs submitted for the first time AMR data on E. coli isolates from meat sampled at border control posts. Where available, monitoring data from humans, food-producing animals and meat thereof were combined and compared at the EU level, with emphasis on multidrug resistance, complete susceptibility and combined resistance patterns to selected and critically important antimicrobials, as well as Salmonella and E. coli isolates exhibiting ESBL-/AmpC-/carbapenemase phenotypes. Resistance was frequently found to commonly used antimicrobials in Salmonella spp. and Campylobacter isolates from humans and animals. Combined resistance to critically important antimicrobials was mainly observed at low levels except in some Salmonella serotypes and in C. coli in some countries. The reporting of a number of CP-producing E. coli isolates (harbouring bla OXA-48, bla OXA-181, and bla NDM-5 genes) in pigs, bovines and meat thereof by a limited number of MSs (4) in 2021, requests a thorough follow-up. The temporal trend analyses in both key outcome indicators (rate of complete susceptibility and prevalence of ESBL-/AmpC- producers) showed that encouraging progress have been registered in reducing AMR in food-producing animals in several EU MSs over the last years.
Collapse
|
4
|
Metagenomic Analysis of the Abundance and Composition of Antibiotic Resistance Genes in Hospital Wastewater in Benin, Burkina Faso, and Finland. mSphere 2023; 8:e0053822. [PMID: 36728456 PMCID: PMC9942590 DOI: 10.1128/msphere.00538-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Antibiotic resistance is a global threat to human health, with the most severe effect in low- and middle-income countries. We explored the presence of antibiotic resistance genes (ARGs) in the hospital wastewater (HWW) of nine hospitals in Benin and Burkina Faso, two low-income countries in West Africa, with shotgun metagenomic sequencing. For comparison, we also studied six hospitals in Finland. The highest sum of the relative abundance of ARGs in the 68 HWW samples was detected in Benin and the lowest in Finland. HWW resistomes and mobilomes in Benin and Burkina Faso resembled each other more than those in Finland. Many carbapenemase genes were detected at various abundances, especially in HWW from Burkina Faso and Finland. The blaGES genes, the most widespread carbapenemase gene in the Beninese HWW, were also found in water intended for hand washing and in a puddle at a hospital yard in Benin. mcr genes were detected in the HWW of all three countries, with mcr-5 being the most common mcr gene. These and other mcr genes were observed in very high relative abundances, even in treated wastewater in Burkina Faso and a street gutter in Benin. The results highlight the importance of wastewater treatment, with particular attention to HWW. IMPORTANCE The global emergence and increased spread of antibiotic resistance threaten the effectiveness of antibiotics and, thus, the health of the entire population. Therefore, understanding the resistomes in different geographical locations is crucial in the global fight against the antibiotic resistance crisis. However, this information is scarce in many low- and middle-income countries (LMICs), such as those in West Africa. In this study, we describe the resistomes of hospital wastewater in Benin and Burkina Faso and, as a comparison, Finland. Our results help to understand the hitherto unrevealed resistance in Beninese and Burkinabe hospitals. Furthermore, the results emphasize the importance of wastewater management infrastructure design to minimize exposure events between humans, HWW, and the environment, preventing the circulation of resistant bacteria and ARGs between humans (hospitals and community) and the environment.
Collapse
|
5
|
Genomic landscape of bla GES-5- and bla GES-24-harboring Gram-negative bacteria from hospital wastewater: emergence of class 3 integron-associated bla GES-24 genes. J Glob Antimicrob Resist 2022; 31:196-206. [PMID: 36180037 DOI: 10.1016/j.jgar.2022.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES This study aimed to characterize Gram negative bacteria carrying blaGES carbapenemase genes detected in wastewater from a hospital with no history of detection of clinical isolates producing GES carbapenemases. METHODS Six hospital effluent samples were screened for carbapenemase-producing organisms (CPO) using CHROMagar mSuperCARBA and MacConkey agar with 1 µg/mL imipenem. Polymerase chain reaction (PCR) amplification and sequencing of carbapenemase genes, multilocus sequence typing, antimicrobial susceptibility testing, and whole-genome sequencing were performed. RESULTS Among 21 CPO isolates, 11 Klebsiella spp. and 5 Enterobacter kobei isolates carried blaGES-24, and 4 E. roggenkampii and 1 Pseudomonas aeruginosa isolates carried blaGES-5. Genomic analysis of 8 representative isolates comprising 6 blaGES-24-positive and 2 blaGES-5-positive revealed that class 3 integrons with complete or defective Tn402-like transposition modules were predominantly associated with two tandem copies of blaGES-24. Furthermore, a total of 5 new class 3 integrons, In3-18 to In3-22, were identified among 5 blaGES-24 and 1 blaGES-5 plasmids. One strain each of K. pneumoniae subsp. pneumoniae and K. quasipneumoniae subsp. similipneumoniae harboring blaGES-24 plasmids also carried a rare blaVEB-1-positive class 1 integron on a non-typeable plasmid, where these blaVEB-1 plasmids had high sequence similarity. Virulence gene profiles differed between Klebsiella spp. and Enterobacter spp.; the former harbored type III fimbriae cluster, salmochelin, and T6SS type i2 gene clusters, while the latter had curli pili operon, aerobactin, T2SS gene clusters, and T6SS type i3 gene clusters. CONCLUSION Our findings confirmed the linkage of blaGES-24 with rare Tn402-like class 3 integrons and the structural diversity of their gene cassette arrays.
Collapse
|
6
|
Kraychete GB, Botelho LAB, Monteiro-Dias PV, de Araújo WJ, Oliveira CJB, Carvalho-Assef APD, Albano RM, Picão RC, Bonelli RR. qnrVC occurs in different genetic contexts in Klebsiella and Enterobacter strains isolated from Brazilian coastal waters. J Glob Antimicrob Resist 2022; 31:38-44. [PMID: 35948241 DOI: 10.1016/j.jgar.2022.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES In contrast to other qnr families, qnrVC has been reported mainly in Vibrio spp. and inserted in class 1 integrons. This study aimed to identify the variants of qnrVC genes detected in Klebsiella pneumoniae carbapenemase-2-producing Enterobacter and Klebsiella strains isolated from Brazilian coastal waters and the genetic contexts associated with their occurrence. METHODS qnrVC variants were identified by Sanger sequencing. Stains were typified by pulsed-field gel electrophoresis. Antimicrobial susceptibility testing, conjugation assays, and whole genome sequencing (WGS) were applied to identify the strains' antimicrobial resistance profile, qnrVC and blaKPC-2 co-transference, and qnrVC genetic context. RESULTS qnrVC1 was identified in 15 Enterobacter and 3 Klebsiella, and qnrVC4 in 2 Enterobacter strains. Pulsed-field gel electrophoresis revealed 12 clonal profiles of Enterobacter and one of Klebsiella. Strains were resistant to aminoglycosides, beta-lactams, fosfomycin, quinolones, and sulfamethoxazole-trimethoprim. Co-transference of qnrVC and blaKPC-2 were obtained from five representative Enterobacter strains, which showed resistance to ampicillin and amoxicillin-clavulanate, and reduced susceptibility to extended-spectrum cephalosporins, meropenem, and ciprofloxacin. WGS analysis from representative strains revealed one K. quasipneumoniae subsp. similipneumoniae, one E. soli, four E. kobei, and seven isolates belonging to Enterobacter Taxon 3. Long-read WGS showed qnrVC and blaKPC-2 were carried by the same replicon on Klebsiella and Enterobacter strains, and the qnrVC association with not previously described genetic environments composed of insertion sequences and truncated genes. These contexts occurred in small- and high-molecular-weight plasmids belonging to IncFII, IncP6, pKPC-CAV1321, and IncU groups. CONCLUSION Our results suggest that the dissemination of qnrVC among Enterobacterales in Brazilian coastal waters is associated with several genetic recombination events.
Collapse
Affiliation(s)
- Gabriela B Kraychete
- Laboratório de Investigação em Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa A B Botelho
- Laboratório de Investigação em Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro V Monteiro-Dias
- Laboratório de Investigação em Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Celso J B Oliveira
- Departamento de Zootecnia, Universidade Federal da Paraíba, Areia, Paraíba, Brazil
| | - Ana Paula D Carvalho-Assef
- Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rodolpho M Albano
- Departamento de Bioquímica, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata C Picão
- Laboratório de Investigação em Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel R Bonelli
- Laboratório de Investigação em Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Wang Z, Zhang Y, Xu H, Chu C, Wang J, Jiao X, Li Q. Whole-genome sequencing analysis reveals pig as the main reservoir for persistent evolution of Salmonella enterica serovar Rissen causing human salmonellosis. Food Res Int 2022; 154:111007. [DOI: 10.1016/j.foodres.2022.111007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/15/2022] [Accepted: 02/10/2022] [Indexed: 11/30/2022]
|
8
|
European Food Safety Authority, European Centre for Disease Prevention and Control. The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2019-2020. EFSA J 2022; 20:e07209. [PMID: 35382452 PMCID: PMC8961508 DOI: 10.2903/j.efsa.2022.7209] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Data on antimicrobial resistance (AMR) in zoonotic and indicator bacteria from humans, animals and food are collected annually by the EU Member States (MSs), jointly analysed by the EFSA and the ECDC and reported in a yearly EU Summary Report. The annual monitoring of AMR in animals and food within the EU is targeted at selected animal species corresponding to the reporting year. The 2020 monitoring specifically focussed on poultry and their derived carcases/meat, while the monitoring performed in 2019 specifically focused on fattening pigs and calves under 1 year of age, as well as their derived carcases/meat. Monitoring and reporting of AMR in 2019-2020 included data regarding Salmonella, Campylobacter and indicator E. coli isolates, as well as data obtained from the specific monitoring of presumptive ESBL-/AmpC-/carbapenemase-producing E. coli isolates. Additionally, some MSs reported voluntary data on the occurrence of methicillin-resistant Staphylococcus aureus in animals and food, with some countries also providing data on antimicrobial susceptibility. This report provides an overview of the main findings of the 2019-2020 harmonised AMR monitoring in the main food-producing animal populations monitored, in carcase/meat samples and in humans. Where available, monitoring data obtained from pigs, calves, broilers, laying hens and turkeys, as well as from carcase/meat samples and humans were combined and compared at the EU level, with particular emphasis on multidrug resistance, complete susceptibility and combined resistance patterns to critically important antimicrobials, as well as Salmonella and E. coli isolates possessing ESBL-/AmpC-/carbapenemase phenotypes. The key outcome indicators for AMR in food-producing animals, such as complete susceptibility to the harmonised panel of antimicrobials in E. coli and the prevalence of ESBL-/AmpC-producing E. coli have been specifically analysed over the period 2014-2020.
Collapse
|
9
|
Murase T, Phuektes P, Ozaki H, Angkititrakul S. Prevalence of qnrS-positive Escherichia coli from chicken in Thailand and possible co-selection of isolates with plasmids carrying qnrS and trimethoprim-resistance genes under farm use of trimethoprim. Poult Sci 2021; 101:101538. [PMID: 34788713 PMCID: PMC8591490 DOI: 10.1016/j.psj.2021.101538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 11/25/2022] Open
Abstract
One hundred and twenty chicken samples from feces (n = 80), the carcass surface at slaughter at 2 meat chicken farms (n = 20), and retail chicken meat from 5 markets (n = 20) collected during 2018 and 2019 were examined for the prevalence of plasmid-mediated quinolone resistance (PMQR) in Escherichia coli. We detected qnrS-positive E. coli in a total of 74 samples from feces (n = 59), the carcass surface (n = 7), and retail meat (n = 8). These 74 qnrS-positive isolates were tested for antimicrobial susceptibility to determine the minimum inhibitory concentrations (MICs) of certain antimicrobials and genetically characterized. Ampicillin-resistance accounted for 71 of the 74 isolates (96%), followed by resistance to oxytetracycline (57/74; 77%), enrofloxacin (ERFX) (56/74; 76%), sulfisoxazole (SUL) (56/74; 76%), trimethoprim (TMP) (49/74; 66%), and dihydrostreptomycin (48/74; 65%). All farm-borne SUL- and TMP-resistant isolates except one were obtained from samples from farm A where a combination of sulfadiazine and TMP was administered to the chickens. Concentrations of ERFX at which 50 and 90% of isolates were inhibited were 2 μg/mL and 32 μg/mL, respectively. Diverse pulsed-field gel electrophoresis (PFGE) patterns of XbaI-digested genomic DNA were observed in the qnrS-positive isolates from fecal samples. Several isolates from feces and the carcass surface had identical XbaI-digested PFGE patterns. S1-nuclease PFGE and Southern blot analysis demonstrated that 7 of 11 dfrA13-positive fecal isolates carried both the qnrS and dfrA13 genes on the same plasmid, and 2 of 3 dfrA1-positive isolates similarly carried both qnrS and dfrA1 on the same plasmid, although the PFGE patterns of XbaI-digested genomic DNA of the isolates were different. These results suggest that the qnrS gene is prevalent in chicken farms via horizontal transfer of plasmids and may partly be co-selected under the use of TMP.
Collapse
Affiliation(s)
- Toshiyuki Murase
- Laboratory of Veterinary Microbiology, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan; The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.
| | - Patchara Phuektes
- Faculty of Veterinary Medicine, Khon Kaen University, 40002, Thailand; Research Group of Emerging and Reemerging Infectious Diseases in Animals and Zoonotic Diseases, Faculty of Veterinary Medicine, Khon Kaen University, 40002, Thailand
| | - Hiroichi Ozaki
- Laboratory of Veterinary Microbiology, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan; The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | | |
Collapse
|
10
|
European Food Safety Authority, European Centre for Disease Prevention and Control. The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2018/2019. EFSA J 2021; 19:e06490. [PMID: 33868492 PMCID: PMC8040295 DOI: 10.2903/j.efsa.2021.6490] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Data on antimicrobial resistance (AMR) in zoonotic and indicator bacteria from humans, animals and food are collected annually by the EU Member States (MSs), jointly analysed by the EFSA and the ECDC and reported in a yearly EU Summary Report. The annual monitoring of AMR in animals and food within the EU is targeted at selected animal species corresponding to the reporting year. The 2018 monitoring specifically focussed on poultry and their derived carcases/meat, while the monitoring performed in 2019 specifically focused on pigs and calves under 1 year of age, as well as their derived carcases/meat. Monitoring and reporting of AMR in 2018/2019 included data regarding Salmonella, Campylobacter and indicator Escherichia coli isolates, as well as data obtained from the specific monitoring of presumptive ESBL-/AmpC-/carbapenemase-producing E. coli isolates. Additionally, some MSs reported voluntary data on the occurrence of meticillin-resistant Staphylococcus aureus in animals and food, with some countries also providing data on antimicrobial susceptibility. This report provides an overview of the main findings of the 2018/2019 harmonised AMR monitoring in the main food-producing animal populations monitored, in related carcase/meat samples and in humans. Where available, data monitoring obtained from pigs, calves, broilers, laying hens and turkeys, as well as from carcase/meat samples and humans were combined and compared at the EU level, with particular emphasis on multidrug resistance, complete susceptibility and combined resistance patterns to critically important antimicrobials, as well as Salmonella and E. coli isolates possessing ESBL-/AmpC-/carbapenemase phenotypes. The outcome indicators for AMR in food-producing animals such as complete susceptibility to the harmonised panel of antimicrobials in E. coli and the prevalence of ESBL-/AmpC-producing E. coli have been also specifically analysed over the period 2015-2019.
Collapse
|
11
|
Racewicz P, Majewski M, Madeja ZE, Łukomska A, Kubiak M. Role of integrons in the proliferation of multiple drug resistance in selected bacteria occurring in poultry production. Br Poult Sci 2020; 61:122-131. [PMID: 31774316 DOI: 10.1080/00071668.2019.1697426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
1. The increase in microbial resistance, and in particular multiple drug resistance (MDR), is an increasing threat to public health. The uncontrolled use of antibiotics and antibacterial chemotherapeutics in the poultry industry, especially in concentrations too low to cause inhibition, and the occurrence of residues in feed and in the environment play a significant role in the development of resistance among zoonotic food-borne microorganisms.2. Determining the presence and transmission methods of resistance in bacteria is crucial for tracking and preventing antibiotic resistance. Horizontal transfer of genetic elements responsible for drug resistance is considered to be the main mechanism for the spread of antibiotic resistance.3. Of the many well-known genetic elements responsible for horizontal gene transfer, integrons are among the most important factors contributing to multiple drug resistance. The mechanism of bacterial drug resistance acquisition through integrons is one of the essential elements of MDR prevention in animal production.
Collapse
Affiliation(s)
- P Racewicz
- Department of Animal Breeding and Product Quality Assessment, Poznan University of Life Sciences, Poznan, Poland
| | - M Majewski
- Department of Animal Breeding and Product Quality Assessment, Poznan University of Life Sciences, Poznan, Poland
| | - Z E Madeja
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland
| | - A Łukomska
- Department of Internal Diseases and Diagnosis, Poznan University of Life Sciences, Poznan, Poland
| | - M Kubiak
- Department of Internal Diseases and Diagnosis, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
12
|
European Food Safety Authority, European Centre for Disease Prevention and Control. The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018. EFSA J 2020; 18:e06007. [PMID: 32874244 PMCID: PMC7448042 DOI: 10.2903/j.efsa.2020.6007] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Data on antimicrobial resistance (AMR) in zoonotic and indicator bacteria from humans, animals and food are collected annually by the EU Member States (MSs), jointly analysed by EFSA and ECDC and reported in a yearly EU Summary Report. The annual monitoring of AMR in animals and food within the EU is targeted at selected animal species corresponding to the reporting year. The 2017 monitoring specifically focussed on pigs and calves under 1 year of age, as well as their derived carcases/meat, while the monitoring performed in 2018 specifically focussed on poultry and their derived carcases/meat. Monitoring and reporting of AMR in 2017/2018 included data regarding Salmonella, Campylobacter and indicator Escherichia coli isolates, as well as data obtained from the specific monitoring of ESBL-/AmpC-/carbapenemase-producing E. coli isolates. Additionally, some MSs reported voluntary data on the occurrence of meticillin-resistant Staphylococcus aureus in animals and food, with some countries also providing data on antimicrobial susceptibility. This report provides, for the first time, an overview of the main findings of the 2017/2018 harmonised AMR monitoring in the main food-producing animal populations monitored, in related carcase/meat samples and in humans. Where available, data monitoring obtained from pigs, calves/cattle, broilers, laying hens and turkeys, as well as from carcase/meat samples and humans were combined and compared at the EU level, with particular emphasis on multiple drug resistance, complete susceptibility and combined resistance patterns to critically important antimicrobials, as well as Salmonella and E. coli isolates exhibiting presumptive ESBL-/AmpC-/carbapenemase-producing phenotypes. The outcome indicators for AMR in food-producing animals, such as complete susceptibility to the harmonised panel of antimicrobials in E. coli and the prevalence of ESBL-/AmpC-producing E. coli have been also specifically analysed over the period 2014-2018.
Collapse
|
13
|
Abstract
While the description of resistance to quinolones is almost as old as these antimicrobial agents themselves, transferable mechanisms of quinolone resistance (TMQR) remained absent from the scenario for more than 36 years, appearing first as sporadic events and afterward as epidemics. In 1998, the first TMQR was soundly described, that is, QnrA. The presence of QnrA was almost anecdotal for years, but in the middle of the first decade of the 21st century, there was an explosion of TMQR descriptions, which definitively changed the epidemiology of quinolone resistance. Currently, 3 different clinically relevant mechanisms of quinolone resistance are encoded within mobile elements: (i) target protection, which is mediated by 7 different families of Qnr (QnrA, QnrB, QnrC, QnrD, QnrE, QnrS, and QnrVC), which overall account for more than 100 recognized alleles; (ii) antibiotic efflux, which is mediated by 2 main transferable efflux pumps (QepA and OqxAB), which together account for more than 30 alleles, and a series of other efflux pumps (e.g., QacBIII), which at present have been sporadically described; and (iii) antibiotic modification, which is mediated by the enzymes AAC(6')Ib-cr, from which different alleles have been claimed, as well as CrpP, a newly described phosphorylase.
Collapse
|
14
|
Campos J, Mourão J, Peixe L, Antunes P. Non-typhoidal Salmonella in the Pig Production Chain: A Comprehensive Analysis of Its Impact on Human Health. Pathogens 2019; 8:E19. [PMID: 30700039 PMCID: PMC6470815 DOI: 10.3390/pathogens8010019] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 11/17/2022] Open
Abstract
Salmonellosis remains one of the most frequent foodborne zoonosis, constituting a worldwide major public health concern. The most frequent sources of human infections are food products of animal origin, being pork meat one of the most relevant. Currently, particular pig food production well-adapted and persistent Salmonella enterica serotypes (e.g., Salmonella Typhimurium, Salmonella 1,4,[5],12:i:-, Salmonella Derby and Salmonella Rissen) are frequently reported associated with human infections in diverse industrialized countries. The dissemination of those clinically-relevant Salmonella serotypes/clones has been related to the intensification of pig production chain and to an increase in the international trade of pigs and pork meat. Those changes that occurred over the years along the food chain may act as food chain drivers leading to new problems and challenges, compromising the successful control of Salmonella. Among those, the emergence of antibiotic resistance in non-typhoidal Salmonella associated with antimicrobials use in the pig production chain is of special concern for public health. The transmission of pig-related multidrug-resistant Salmonella serotypes, clones and/or genetic elements carrying clinically-relevant antibiotic resistance genes, frequently associated with metal tolerance genes, from pigs and pork meat to humans, has been reported and highlights the contribution of different drivers to the antibiotic resistance burden. Gathered data strengthen the need for global mandatory interventions and strategies for effective Salmonella control and surveillance across the pig production chain. The purpose of this review was to provide an overview of the role of pig and pork meat in human salmonellosis at a global scale, highlighting the main factors contributing to the persistence and dissemination of clinically-relevant pig-related Salmonella serotypes and clones.
Collapse
Affiliation(s)
- Joana Campos
- UCIBIO@REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal.
| | - Joana Mourão
- UCIBIO@REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal.
| | - Luísa Peixe
- UCIBIO@REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal.
| | - Patrícia Antunes
- UCIBIO@REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal.
- Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Portugal; Rua Dr. Roberto Frias, 4200 Porto, Portugal.
| |
Collapse
|
15
|
Integrons in Enterobacteriaceae: diversity, distribution and epidemiology. Int J Antimicrob Agents 2017; 51:167-176. [PMID: 29038087 DOI: 10.1016/j.ijantimicag.2017.10.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/29/2017] [Accepted: 10/07/2017] [Indexed: 01/03/2023]
Abstract
Integrons are versatile gene acquisition systems that allow efficient capturing of exogenous genes and ensure their expression. Various classes of integrons possessing a wide variety of gene cassettes are ubiquitously distributed in enteric bacteria worldwide. The epidemiology of integrons associated multidrug resistance in Enterobacteriaceae is rapidly evolving. In the past two decades, the incidence of integrons in enteric bacteria has increased drastically with evolution of multiple gene cassettes, novel gene arrangements and complex chromosomal integrons such as Salmonella genomic islands. This review focuses on the distribution, versatility, spread and global trends of integrons among important members of the Enterobacteriaceae, including Escherichia coli, Klebsiella, Shigella and Salmonella, which are known to cause infections globally. Such a comprehensive understanding of integron-associated antibiotic resistance, their role in the spread of such resistance traits and their clinical relevance especially with regard to each genus individually is paramount to contain the global spread of antibiotic resistance.
Collapse
|