1
|
Zhou X, Guo Y, Pan Y, Zhao Y, Liu H. Phenotypic heterogeneity and pathogenicity of Listeria monocytogenes under complex salinities of bile salts and sodium salts stress. Arch Microbiol 2025; 207:101. [PMID: 40133551 DOI: 10.1007/s00203-025-04272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/10/2025] [Indexed: 03/27/2025]
Abstract
Listeria monocytogenes is a foodborne pathogen that is widespread in the environment and food, and can cause zoonotic diseases. Previous studies have explored its growth under various environmental stressors, but little is known about its behavior under the complex effects of bile salts and sodium salts. Therefore, this study aimed to explore the differences of different salinities (Brain Heart Infusion (BHI) and BHI medium with 0.90% NaCl, 0.50% NaCl + 0.04% bile salts, and 0.90% NaCl + 0.04% bile salts) on growth, motility, biofilm formation, and virulence of L. monocytogenes. This study also artificially simulated L. monocytogenes contamination in pork samples. The results showed that the maximum specific growth rate (μmax) of 40 L. monocytogenes isolates was significantly reduced and the lag time (LT) was significantly prolonged under the complex salinity treatment, exhibiting greater growth heterogeneity; serotype 4b isolates exhibited strong resistance under complex salinities. L. monocytogenes biofilm formation was significantly reduced with the increase in complex salinities, motility was inhibited, and pathogenicity was enhanced, especially in serotype 1/2c isolates. Furthermore, the complex salinities also caused damage to the cell membrane of L. monocytogenes. L. monocytogenes grew wildly in pork samples, while its growth was inhibited when bile salts were added to form the complex salinities environment. These results highlight the phenotypic heterogeneity and pathogenicity of L. monocytogenes under complex salinities, offering insights for better risk assessment and pathogen control in food safety.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yingying Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product On Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, China.
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product On Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China.
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, China.
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product On Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China.
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Food Industry Chain Ecological Recycling Research Institute of Food Science and Technology College, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
2
|
Javed MQ, Kovalchuk I, Yevtushenko D, Yang X, Stanford K. Relationship between Desiccation Tolerance and Biofilm Formation in Shiga Toxin-Producing Escherichia coli. Microorganisms 2024; 12:243. [PMID: 38399647 PMCID: PMC10891874 DOI: 10.3390/microorganisms12020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a major concern in the food industry and requires effective control measures to prevent foodborne illnesses. Previous studies have demonstrated increased difficulty in the control of biofilm-forming STEC. Desiccation, achieved through osmotic stress and water removal, has emerged as a potential antimicrobial hurdle. This study focused on 254 genetically diverse E. coli strains collected from cattle, carcass hides, hide-off carcasses, and processing equipment. Of these, 141 (55.51%) were STEC and 113 (44.48%) were generic E. coli. The biofilm-forming capabilities of these isolates were assessed, and their desiccation tolerance was investigated to understand the relationships between growth temperature, relative humidity (RH), and bacterial survival. Only 28% of the STEC isolates had the ability to form biofilms, compared to 60% of the generic E. coli. Stainless steel surfaces were exposed to different combinations of temperature (0 °C or 35 °C) and relative humidity (75% or 100%), and the bacterial attachment and survival rates were measured over 72 h and compared to controls. The results revealed that all the strains exposed to 75% relative humidity (RH) at any temperature had reduced growth (p < 0.001). In contrast, 35 °C and 100% RH supported bacterial proliferation, except for isolates forming the strongest biofilms. The ability of E. coli to form a biofilm did not impact growth reduction at 75% RH. Therefore, desiccation treatment at 75% RH at temperatures of 0 °C or 35 °C holds promise as a novel antimicrobial hurdle for the removal of biofilm-forming E. coli from challenging-to-clean surfaces and equipment within food processing facilities.
Collapse
Affiliation(s)
- Muhammad Qasim Javed
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (M.Q.J.); (I.K.); (D.Y.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (M.Q.J.); (I.K.); (D.Y.)
| | - Dmytro Yevtushenko
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (M.Q.J.); (I.K.); (D.Y.)
| | - Xianqin Yang
- Agriculture and Agri-Food Canada, Lacombe, AB T4L 1V7, Canada;
| | - Kim Stanford
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (M.Q.J.); (I.K.); (D.Y.)
| |
Collapse
|
3
|
Burckhardt JC, Chong DHY, Pett N, Tropini C. Gut commensal Enterocloster species host inoviruses that are secreted in vitro and in vivo. MICROBIOME 2023; 11:65. [PMID: 36991500 PMCID: PMC10061712 DOI: 10.1186/s40168-023-01496-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/17/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Bacteriophages in the family Inoviridae, or inoviruses, are under-characterized phages previously implicated in bacterial pathogenesis by contributing to biofilm formation, immune evasion, and toxin secretion. Unlike most bacteriophages, inoviruses do not lyse their host cells to release new progeny virions; rather, they encode a secretion system that actively pumps them out of the bacterial cell. To date, no inovirus associated with the human gut microbiome has been isolated or characterized. RESULTS In this study, we utilized in silico, in vitro, and in vivo methods to detect inoviruses in bacterial members of the gut microbiota. By screening a representative genome library of gut commensals, we detected inovirus prophages in Enterocloster spp. (formerly Clostridium spp.). We confirmed the secretion of inovirus particles in in vitro cultures of these organisms using imaging and qPCR. To assess how the gut abiotic environment, bacterial physiology, and inovirus secretion may be linked, we deployed a tripartite in vitro assay that progressively evaluated bacterial growth dynamics, biofilm formation, and inovirus secretion in the presence of changing osmotic environments. Counter to other inovirus-producing bacteria, inovirus production was not correlated with biofilm formation in Enterocloster spp. Instead, the Enterocloster strains had heterogeneous responses to changing osmolality levels relevant to gut physiology. Notably, increasing osmolality induced inovirus secretion in a strain-dependent manner. We confirmed inovirus secretion in a gnotobiotic mouse model inoculated with individual Enterocloster strains in vivo in unperturbed conditions. Furthermore, consistent with our in vitro observations, inovirus secretion was regulated by a changed osmotic environment in the gut due to osmotic laxatives. CONCLUSION In this study, we report on the detection and characterization of novel inoviruses from gut commensals in the Enterocloster genus. Together, our results demonstrate that human gut-associated bacteria can secrete inoviruses and begin to elucidate the environmental niche filled by inoviruses in commensal bacteria. Video Abstract.
Collapse
Affiliation(s)
- Juan C Burckhardt
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Derrick H Y Chong
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Nicola Pett
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Carolina Tropini
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada.
- Humans and the Microbiome Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Canada.
| |
Collapse
|
4
|
Staphylococcus aureus Cell Wall Phenotypic Changes Associated with Biofilm Maturation and Water Availability: A Key Contributing Factor for Chlorine Resistance. Int J Mol Sci 2023; 24:ijms24054983. [PMID: 36902413 PMCID: PMC10003762 DOI: 10.3390/ijms24054983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Staphylococcus aureus biofilms are resistant to both antibiotics and disinfectants. As Staphylococci cell walls are an important defence mechanism, we sought to examine changes to the bacterial cell wall under different growth conditions. Cell walls of S. aureus grown as 3-day hydrated biofilm, 12-day hydrated biofilm, and 12-day dry surface biofilm (DSB) were compared to cell walls of planktonic organisms. Additionally, proteomic analysis using high-throughput tandem mass tag-based mass spectrometry was performed. Proteins involved in cell wall synthesis in biofilms were upregulated in comparison to planktonic growth. Bacterial cell wall width (measured by transmission electron microscopy) and peptidoglycan production (detected using a silkworm larva plasma system) increased with biofilm culture duration (p < 0.001) and dehydration (p = 0.002). Similarly, disinfectant tolerance was greatest in DSB, followed by 12-day hydrated biofilm and then 3-day biofilm, and it was least in the planktonic bacteria--suggesting that changes to the cell wall may be a key factor for S. aureus biofilm biocide resistance. Our findings shed light on possible new targets to combat biofilm-related infections and hospital dry surface biofilms.
Collapse
|
5
|
Chavignon M, Coignet L, Bonhomme M, Bergot M, Tristan A, Verhoeven P, Josse J, Laurent F, Butin M. Environmental Persistence of Staphylococcus capitis NRCS-A in Neonatal Intensive Care Units: Role of Biofilm Formation, Desiccation, and Disinfectant Tolerance. Microbiol Spectr 2022; 10:e0421522. [PMID: 36409142 PMCID: PMC9769769 DOI: 10.1128/spectrum.04215-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 11/23/2022] Open
Abstract
The clone Staphylococcus capitis NRCS-A is responsible for late-onset sepsis in neonatal intensive care units (NICUs) worldwide. Over time, this clone has evolved into three subgroups that are increasingly adapted to the NICU environment. This study aimed to decipher the mechanisms involved in NRCS-A persistence in NICUs. Twenty-six S. capitis strains belonging to each of the three NRCS-A clone subgroups and two other non-NRCS-A groups from neonates (alpha clone) or from adult patients ("other strains") were compared based on growth kinetics and ability to form biofilm as well as tolerance to desiccation and to different disinfectants. S. capitis biofilm formation was enhanced in rich medium and decreased under conditions of nutrient stress for all strains. However, under conditions of nutrient stress, NRCS-A strains presented an enhanced ability to adhere and form a thin biofilm containing more viable and culturable bacteria (mean 5.7 log10 CFU) than the strains from alpha clone (mean, 1.1 log10 CFU) and the "other strains" (mean, 4.2 log10 CFU) (P < 0.0001). The biofilm is composed of bacterial aggregates with a matrix mainly composed of polysaccharides. The NRCS-A clone also showed better persistence after a 48-h desiccation. However, disinfectant tolerance was not enhanced in the NRCS-A clone in comparison with that of strains from adult patients. In conclusion, the ability to form biofilm under nutrient stress and to survive desiccation are two major advantages for clone NRCS-A that could explain its ability to persist and settle in the specific environment of NICU settings. IMPORTANCE Neonatal intensive care units (NICUs) host extremely fragile newborns, including preterm neonates. These patients are very susceptible to nosocomial infections, with coagulase-negative staphylococci being the species most frequently involved. In particular, a Staphylococcus capitis clone named NRCS-A has emerged worldwide specifically in NICUs and is responsible for severe nosocomial sepsis in preterm neonates. This clone is specifically adapted to the NICU environment and is able to colonize and maintain on NICU surfaces. The present work explored the mechanisms involved in the persistence of the NRCS-A clone in the NICU environment despite strict hygiene measures. The ability to produce biofilm under nutritional stress and to resist desiccation appear to be the two main advantages of NRCS-A in comparison with other strains. These findings are pivotal to provide clues for subsequent development of targeted methods to combat NRCS-A and to stop its dissemination.
Collapse
Affiliation(s)
- Marie Chavignon
- Centre International de Recherche en Infectiologie (CIRI), Team Pathogénie des Staphylocoques, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Ludivine Coignet
- Centre International de Recherche en Infectiologie (CIRI), Team Pathogénie des Staphylocoques, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Mélanie Bonhomme
- Centre International de Recherche en Infectiologie (CIRI), Team Pathogénie des Staphylocoques, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Marine Bergot
- Centre International de Recherche en Infectiologie (CIRI), Team Pathogénie des Staphylocoques, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Anne Tristan
- Centre International de Recherche en Infectiologie (CIRI), Team Pathogénie des Staphylocoques, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
- Institut des Agents Infectieux, Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, Lyon, France
| | - Paul Verhoeven
- Centre International de Recherche en Infectiologie (CIRI), Team GIMAP (Groupe sur l’Immunité des Muqueuses et Agents Pathogènes), INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
- Department of Infectious Agents and Hygiene, University-Hospital of Saint-Etienne, Saint-Etienne, France
| | - Jérôme Josse
- Centre International de Recherche en Infectiologie (CIRI), Team Pathogénie des Staphylocoques, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Frédéric Laurent
- Centre International de Recherche en Infectiologie (CIRI), Team Pathogénie des Staphylocoques, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
- Institut des Agents Infectieux, Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, Lyon, France
| | - Marine Butin
- Centre International de Recherche en Infectiologie (CIRI), Team Pathogénie des Staphylocoques, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
- Service de Néonatologie et Réanimation Néonatale, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| |
Collapse
|
6
|
Austin PD, Stapleton P, Elia M. Comparative effect of seven prophylactic locks to prevent biofilm biomass and viability in intravenous catheters. J Antimicrob Chemother 2022; 77:2191-2198. [PMID: 35723966 DOI: 10.1093/jac/dkac181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Patients requiring long-term intravenous access are at risk of intraluminal catheter bloodstream infection. 'Prophylactic' locks aim to limit this risk but there is uncertainty regarding the most effective lock. OBJECTIVES To develop a novel technique intended to replicate clinical procedures to compare the effectiveness of various 'prophylactic' locks against biofilm biomass ('biomass') formation and biofilm viability ('viability') of Escherichia coli and Staphylococcus epidermidis in intravenous catheters. METHODS For 10 consecutive days 106 cfu/mL E. coli NCTC 10418 and S. epidermidis ATCC 12228 were separately cultured in single lumen 9.6 French silicone tunnelled and cuffed catheters. These were flushed with 0.9% w/v sodium chloride using a push-pause technique before and after instillation of seven 'prophylactic' locks (water, ethanol, sodium chloride, heparinized sodium chloride, citrate, taurolidine plus citrate, and taurolidine; each in triplicate) for 6 h daily. Intraluminal 'biomass' and 'viability' were quantified using crystal violet staining and flush culture, respectively. RESULTS The reduction of 'biomass' and 'viability' depended on both agent and species. Citrate was least effective against E. coli 'viability' and 'biomass' but most effective against S. epidermidis 'viability', and taurolidine was most effective against E. coli 'biomass' and 'viability' but least effective against S. epidermidis 'viability'. 'Biomass' and 'viability' were significantly correlated in E. coli between (r = 0.997, P < 0.001) and within (r = 0.754, P = 0.001) interventions, but not in S. epidermidis. CONCLUSIONS A novel technique found the effect of 'prophylactic' agents in reducing 'biomass' and 'viability' varied by species. The choice of agent depends on the most likely infecting organism.
Collapse
Affiliation(s)
- Peter David Austin
- UCL School of Pharmacy, University College London, London, UK.,Pharmacy Department, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Paul Stapleton
- UCL School of Pharmacy, University College London, London, UK
| | - Marinos Elia
- Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
7
|
Padgett-Pagliai KA, Pagliai FA, da Silva DR, Gardner CL, Lorca GL, Gonzalez CF. Osmotic stress induces long-term biofilm survival in Liberibacter crescens. BMC Microbiol 2022; 22:52. [PMID: 35148684 PMCID: PMC8832773 DOI: 10.1186/s12866-022-02453-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/21/2022] [Indexed: 11/24/2022] Open
Abstract
Citrus greening, also known as Huanglongbing (HLB), is a devastating citrus plant disease caused predominantly by Liberibacter asiaticus. While nearly all Liberibacter species remain uncultured, here we used the culturable L. crescens BT-1 as a model to examine physiological changes in response to the variable osmotic conditions and nutrient availability encountered within the citrus host. Similarly, physiological responses to changes in growth temperature and dimethyl sulfoxide concentrations were also examined, due to their use in many of the currently employed therapies to control the spread of HLB. Sublethal heat stress was found to induce the expression of genes related to tryptophan biosynthesis, while repressing the expression of ribosomal proteins. Osmotic stress induces expression of transcriptional regulators involved in expression of extracellular structures, while repressing the biosynthesis of fatty acids and aromatic amino acids. The effects of osmotic stress were further evaluated by quantifying biofilm formation of L. crescens in presence of increasing sucrose concentrations at different stages of biofilm formation, where sucrose-induced osmotic stress delayed initial cell attachment while enhancing long-term biofilm viability. Our findings revealed that exposure to osmotic stress is a significant contributing factor to the long term survival of L. crescens and, possibly, to the pathogenicity of other Liberibacter species.
Collapse
Affiliation(s)
- Kaylie A Padgett-Pagliai
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - Fernando A Pagliai
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - Danilo R da Silva
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - Christopher L Gardner
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA.
| |
Collapse
|
8
|
Cao Y, Li L, Zhang Y, Liu F, Xiao X, Li X, Yu Y. Evaluation of Cronobacter sakazakii biofilm formation after sdiA knockout in different osmotic pressure conditions. Food Res Int 2022; 151:110886. [PMID: 34980413 DOI: 10.1016/j.foodres.2021.110886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 12/26/2022]
Abstract
This study characterizes the impact of sdiA on biofilm formation under normal or osmotic stress conditions in Cronobacter sakazakii by constructing a sdiA deletion mutant (ΔsdiA). Here, the downregulation of flagellar assembly-related genes and upregulation of capsular, cellulose and lipopolysaccharide biosynthesis-associated genes in ΔsdiA were observed when compared to the wild type strain (WT) through transcriptomic analysis. Meanwhile, reduced ability of motility, enhanced cell surface hydrophobicity and stronger biofilms with extracellular matrix were observed in WT with deletion of sdiA. Both WT and ΔsdiA formed more biofilm in low osmotic stress medium, while in hyperosmolarity conditions, formation of biofilm was dramatically reduced. Our findings supported that sdiA might suppress biofilm formation of C. sakazakii by regulating biosynthesis of flagellar and extracellular polymeric substances. This study investigates the role of sdiA on biofilm formation in C. sakazakii, and provides the basis for the inhibition of C. sakazakii in food industry and infant-feeding.
Collapse
Affiliation(s)
- Yifang Cao
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Li Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Yan Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Fengsong Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Xinglong Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China.
| | - Xiaofeng Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Yigang Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China.
| |
Collapse
|
9
|
Li F, Xiong XS, Yang YY, Wang JJ, Wang MM, Tang JW, Liu QH, Wang L, Gu B. Effects of NaCl Concentrations on Growth Patterns, Phenotypes Associated With Virulence, and Energy Metabolism in Escherichia coli BW25113. Front Microbiol 2021; 12:705326. [PMID: 34484145 PMCID: PMC8415458 DOI: 10.3389/fmicb.2021.705326] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/21/2021] [Indexed: 12/02/2022] Open
Abstract
According to the sit-and-wait hypothesis, long-term environmental survival is positively correlated with increased bacterial pathogenicity because high durability reduces the dependence of transmission on host mobility. Many indirectly transmitted bacterial pathogens, such as Mycobacterium tuberculosis and Burkhoderia pseudomallei, have high durability in the external environment and are highly virulent. It is possible that abiotic stresses may activate certain pathways or the expressions of certain genes, which might contribute to bacterial durability and virulence, synergistically. Therefore, exploring how bacterial phenotypes change in response to environmental stresses is important for understanding their potentials in host infections. In this study, we investigated the effects of different concentrations of salt (sodium chloride, NaCl), on survival ability, phenotypes associated with virulence, and energy metabolism of the lab strain Escherichia coli BW25113. In particular, we investigated how NaCl concentrations influenced growth patterns, biofilm formation, oxidative stress resistance, and motile ability. In terms of energy metabolism that is central to bacterial survival, glucose consumption, glycogen accumulation, and trehalose content were measured in order to understand their roles in dealing with the fluctuation of osmolarity. According to the results, trehalose is preferred than glycogen at high NaCl concentration. In order to dissect the molecular mechanisms of NaCl effects on trehalose metabolism, we further checked how the impairment of trehalose synthesis pathway (otsBA operon) via single-gene mutants influenced E. coli durability and virulence under salt stress. After that, we compared the transcriptomes of E. coli cultured at different NaCl concentrations, through which differentially expressed genes (DEGs) and differential pathways with statistical significance were identified, which provided molecular insights into E. coli responses to NaCl concentrations. In sum, this study explored the in vitro effects of NaCl concentrations on E. coli from a variety of aspects and aimed to facilitate our understanding of bacterial physiological changes under salt stress, which might help clarify the linkages between bacterial durability and virulence outside hosts under environmental stresses.
Collapse
Affiliation(s)
- Fen Li
- Medical Technology School of Xuzhou Medical University, Xuzhou, China
| | - Xue-Song Xiong
- Medical Technology School of Xuzhou Medical University, Xuzhou, China
| | - Ying-Ying Yang
- School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Jun-Jiao Wang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Meng-Meng Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jia-Wei Tang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Qing-Hua Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, China
| | - Liang Wang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Bing Gu
- Medical Technology School of Xuzhou Medical University, Xuzhou, China.,Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
10
|
Cardoso Guimarães L, Marques de Souza B, de Oliveira Whitaker C, Abreu F, Barreto Rocha Ferreira R, Dos Santos KRN. Increased biofilm formation by Staphylococcus aureus clinical isolates on surfaces covered with plasma proteins. J Med Microbiol 2021; 70. [PMID: 34338626 DOI: 10.1099/jmm.0.001389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Introduction. Biofilm formation is a major virulence factor associated with Staphylococcus aureus infections. However, the influence of plasma proteins on biofilm formation of clinical isolates in vitro remains unclear.Hypotheses. We hypothesized that coating surfaces with plasma proteins might induce biofilm formation by S. aureus of different clonal lineages.Aim. To evaluate biofilm production by clinical S. aureus isolates of different clonal lineages isolated in Rio de Janeiro hospitals and investigated the presence of biofilm-associated genes.Methodology. This study assessed biofilm production of 60 S. aureus isolates in polystyrene microtitre plates with and without fibrinogen or fibronectin. The biochemical composition of the biofilm matrices was determined and the biofilm formation on fibrinogen-coated surfaces was also evaluated by confocal laser scanning microscopy. The presence of biofilm-related genes was detected by PCR, and the typing and functionality of agr operon was also evaluated.Results. Most of the isolates (45 %) were weak biofilm producers or non-producers. However, most of them presented a significant increase in biofilm production on plates covered with plasma proteins. There was no significant difference in biofilm formation between methicillin-resistant and -susceptible S. aureus isolates, or between different clonal lineages, except for ST30-IV (weak producers) and ST239-III (strong producers). The fnbB gene was associated with higher biofilm production.Conclusion. An increase in biofilm production in the presence of plasma proteins highlights the importance of investigating biofilm formation by S. aureus clinical isolates under different conditions since this virulence factor contributes to persistent infections and increased resistance to antimicrobials.
Collapse
Affiliation(s)
- Lorrayne Cardoso Guimarães
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bruna Marques de Souza
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Fernanda Abreu
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
11
|
Cavalcante FS, Saintive S, Carvalho Ferreira D, Rocha Silva AB, Guimarães LC, Braga BS, Dios Abad ED, Ribeiro M, Netto Dos Santos KR. Methicillin-resistant Staphylococcus aureus from infected skin lesions present several virulence genes and are associated with the CC30 in Brazilian children with atopic dermatitis. Virulence 2021; 12:260-269. [PMID: 33356835 PMCID: PMC7808431 DOI: 10.1080/21505594.2020.1869484] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease and colonization by Staphylococcus aureus may affect up to 100% of these patients. Virulent and resistant isolates can worsen AD patient clinical condition and jeopardize the treatment. We aimed to detect virulence genes and to evaluate the biofilm production of S. aureus isolates from infected skin lesions of children with AD. Methicillin resistance was detected by phenotypic and molecular tests and the virulence genes were detected by PCR. Biofilm formation was assessed by bacterial growing on microtiter plates and later stained with safranin. Genotyping was performed by Pulsed-Field Gel Electrophoresis and Multilocus Sequence Typing. Among 106 AD patients, 55 (51.8%) had developed S. aureus cutaneous infections and 23 (41.6%) were methicillin-resistant (MRSA). All 55 isolates carried the fnbA, hla, icaA, sasG, and seu genes, and more than 70% presented cna, eap, ebpS, hlg, and pvl genes. Clonal complex (CC) 30 was the main lineage found (34.5%), especially among MRSA isolates (52.2%). The egc cluster and the bbp gene were significantly the most frequent in MRSA isolates and in USA1100/ST30/CC30 lineage. Most of the isolates (74.5%) were non-biofilm producers and many of them only started to produce it in the presence of fibrinogen. There was no significant association between S. aureus isolates features and the AD severity. This study demonstrated a high frequency of CC30 MRSA isolates presenting several virulence genes in infected skin lesions of AD children in Brazil, that may influence the severity of the disease and the treatments required.
Collapse
Affiliation(s)
| | - Simone Saintive
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | - Dennis Carvalho Ferreira
- Faculdade de Odontologia, Universidade Veiga de Almeida , Rio de Janeiro, Brazil.,Faculdade de Odontologia, Universidade Estácio de Sá , Rio de Janeiro, Brazil
| | - Adriana Barbosa Rocha Silva
- Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | - Lorrayne Cardoso Guimarães
- Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | | | - Eliane de Dios Abad
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | - Marcia Ribeiro
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | | |
Collapse
|
12
|
Common Plant-Derived Terpenoids Present Increased Anti-Biofilm Potential against Staphylococcus Bacteria Compared to a Quaternary Ammonium Biocide. Foods 2020; 9:foods9060697. [PMID: 32492772 PMCID: PMC7353659 DOI: 10.3390/foods9060697] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
The antimicrobial actions of three common plant-derived terpenoids (i.e., carvacrol, thymol and eugenol) were compared to those of a typical quaternary ammonium biocide (i.e., benzalkonium chloride; BAC), against both planktonic and biofilm cells of two widespread Staphylococcus species (i.e., S. aureus and S. epidermidis). The minimum inhibitory and bactericidal concentrations (MICs, MBCs) of each compound against the planktonic cells of each species were initially determined, together with their minimum biofilm eradication concentrations (MBECs). Various concentrations of each compound were subsequently applied, for 6 min, against each type of cell, and survivors were enumerated by agar plating to calculate log reductions and determine the resistance coefficients (Rc) for each compound, as anti-biofilm effectiveness indicators. Sessile communities were always more resistant than planktonic ones, depending on the biocide and species. Although lower BAC concentrations were always needed to kill a specified population of either cell type compared to the terpenoids, for the latter, the required increases in their concentrations, to be equally effective against the biofilm cells with respect to the planktonic ones, were not as intense as those observed in the case of BAC, presenting thus significantly lower Rc. This indicates their significant anti-biofilm potential and advocate for their further promising use as anti-biofilm agents.
Collapse
|