1
|
Boattini M, Gaibani P, Comini S, Costa C, Cavallo R, Broccolo F, Bianco G. In vitro activity and resistance mechanisms of novel antimicrobial agents against metallo-β-lactamase producers. Eur J Clin Microbiol Infect Dis 2025; 44:1041-1068. [PMID: 40064744 PMCID: PMC12062158 DOI: 10.1007/s10096-025-05080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/18/2025] [Indexed: 05/09/2025]
Abstract
The carbapenemase-producing Gram-negative organisms represent an urgent clinical and public health concern, as they have been associated with increased mortality and high dissemination in healthcare settings. Although overall incidence rates of infections sustained by metallo-β-lactamase (MβL)-producers have remained lower than those sustained by other carbapenemase-producers, albeit with substantial geographic differences, a significant increase in the prevalence of MβL-producers has been observed over the last decade. The recent development of new antimicrobials expanded the armamentarium to counter the challenge of metallo-β-lactamase (MβL)-producers. Cefiderocol and aztreonam/avibactam are already clinically available and recommended by international guidelines. In addition, two new classes of β-lactam/ β-lactamase combinations are under clinical evaluation: (i) combination of β-lactam with novel boronic-derived inhibitors (e.g. taniborbactam and xeruborbactam), (ii) combination of β-lactam with last generation diazabicyclooctane β-lactamase inhibitors (e.g. zidebactam and nacubactam), active on most of serine-β-lactamases but also showing strong intrinsic activity on PBP-2. This review aims to provide up-to-date data on the characteristics, activity and emerging resistance mechanisms of the armamentarium of clinically available or soon-to-be introduced drugs for the treatment of MβL-producing Gram-negative organisms.
Collapse
Affiliation(s)
- Matteo Boattini
- Microbiology and Virology Unit, University Hospital Città Della Salute E Della Scienza Di Torino, Turin, Italy
- Department of Public Health and Paediatrics, University of Torino, Turin, Italy
- Lisbon Academic Medical Centre, Lisbon, Portugal
| | - Paolo Gaibani
- Microbiology and Virology Unit, Department of Pathology, Azienda Ospedaliera Universitaria Integrata Di Verona, Verona, Italy
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, Verona, Italy
| | - Sara Comini
- Operative Unit of Clinical Pathology, Carlo Urbani Hospital, Ancona, Italy
| | - Cristina Costa
- Microbiology and Virology Unit, University Hospital Città Della Salute E Della Scienza Di Torino, Turin, Italy
- Department of Public Health and Paediatrics, University of Torino, Turin, Italy
| | - Rossana Cavallo
- Microbiology and Virology Unit, University Hospital Città Della Salute E Della Scienza Di Torino, Turin, Italy
- Department of Public Health and Paediatrics, University of Torino, Turin, Italy
| | - Francesco Broccolo
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - Gabriele Bianco
- Department of Experimental Medicine, University of Salento, Lecce, Italy.
| |
Collapse
|
2
|
Liu X, Li Z, Zhang F, Yang X, Lei Z, Li C, Wu Y, Zhao J, Zhang Y, Hu Y, Shen F, Wang P, Yang J, Liu Y, Shi H, Lu B. In vitro antimicrobial activity of six novel β-lactam and β-lactamase inhibitor combinations and cefiderocol against NDM-producing Enterobacterales in China. Int J Antimicrob Agents 2025; 65:107407. [PMID: 39672348 DOI: 10.1016/j.ijantimicag.2024.107407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
INTRODUCTION To date, the global prevalence of New Delhi metallo-β-lactamase (NDM) in carbapenem-resistant Enterobacterales (CRE) has been of concern, which is not inhibited by classical β-lactamase inhibitors (BLIs). In this study, we investigated the newly developed antimicrobial agents or inhibitors against NDM-producing Enterobacterales (NPEs). METHODS The in vitro activities of cefiderocol, cefepime/taniborbactam, meropenem/taniborbactam, cefepime/zidebactam, meropenem/nacubactam, aztreonam/nacubactam and aztreonam/avibactam were analyzed in 204 NPE strains collected in China. The potential resistance mechanisms were identified by whole genome sequencing. RESULTS Of 204 NPE strains, 18.1% (37/204) were resistant to cefiderocol, in which cirA deleterious alteration, PBP3 insertion and NDM production were taken as potential resistance mechanisms; 28.9% (59/204) were resistant to cefepime/zidebactam, involving K. pneumoniae with ompK35 deleterious alteration; 22.5% (46/204) were resistant to cefepime/taniborbactam, in which YRIN or YRIK inserted in PBP3 and altered ompC are more frequently detected in the resistant E. coli isolates; 27.9% (57/204) were resistant to meropenem/taniborbactam. Aztreonam/avibactam and aztreonam/nacubactam exhibited excellent activity against NPE. However, meropenem/nacubactam had the lowest activity, with only 49.0% (100/204) of all isolates having MICs of <4/4 mg/L. CONCLUSIONS Aztreonam/avibactam and aztreonam/nacubactam showed the highest activity against NPE. The potential resistance mechanisms of novel antimicrobial agents against NPE should be under active surveillance.
Collapse
Affiliation(s)
- Xinmeng Liu
- Peking University China-Japan Friendship School of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China; Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ziyao Li
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China; China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Changping Laboratory, Beijing, China
| | - Feilong Zhang
- Peking University China-Japan Friendship School of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China; Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinrui Yang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zichen Lei
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China; China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chen Li
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Liuyang Traditional Chinese Medicine Hospital, Changsha, Hunan, China
| | - Yongli Wu
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiankang Zhao
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yulin Zhang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanning Hu
- Peking University China-Japan Friendship School of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China; Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - FangFang Shen
- Heping Hospital affiliated with Changzhi Medical College, Changzhi, Shanxi, China
| | - Pingbang Wang
- The People's Hospital of Liuyang, Changsha, Hunan, China
| | - Junwen Yang
- Department of Laboratory Medicine, Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated with Zhengzhou University, Zhengzhou, Henan, China
| | - Yulei Liu
- Department of Laboratory Medicine, Beijing Anzhen Hospital, Beijing, China
| | - Huihui Shi
- Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) Nantong, Jiangsu, China
| | - Binghuai Lu
- Peking University China-Japan Friendship School of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China; Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China; China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Bassetti M, Larosa B, Vena A, Giacobbe DR. Novel agents in development for the treatment of resistant Gram-negative infections. Expert Rev Anti Infect Ther 2024; 22:965-976. [PMID: 39292619 DOI: 10.1080/14787210.2024.2407068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 09/20/2024]
Abstract
INTRODUCTION Several novel agents are in advanced stages of clinical development, potentially expanding our treatment options against third- and fourth-generation cephalosporin-resistant and carbapenem-resistant Gram-negative bacteria (GNB), including those pathogens for which the current number of effective treatments is limited. AREAS COVERED This review focuses on agents that have completed or ongoing phase-3 studies. A PubMed search was conducted up to 31 May 2024. EXPERT OPINION Novel agents in late-stage clinical development belong to the β-lactam or β-lactam/β-lactamase inhibitor combinations class and display variable antimicrobial activity depending on the specific β-lactamases expressed by GNB, particularly carbapenemases. While many of these novel agents demonstrate in vitro activity against carbapenem-resistant GNB, their efficacy has mainly been evaluated in phase-3 randomized controlled trials (RCT) for infections caused by carbapenem-susceptible GNB. Although evidence from real-world observational studies is generally less robust than that from RCT, it could be crucial for updating clinical guidelines on treating carbapenem-resistant GNB with these new agents in the absence of dedicated RCT.
Collapse
Affiliation(s)
- Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Barbara Larosa
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
4
|
Vázquez-Ucha JC, Alonso-Garcia I, Guijarro-Sánchez P, Lasarte-Monterrubio C, Álvarez-Fraga L, Cendón-Esteve A, Outeda M, Maceiras R, Peña-Escolano A, Martínez-Guitián M, Arca-Suárez J, Bou G, Beceiro A. Activity of aztreonam in combination with novel β-lactamase inhibitors against metallo-β-lactamase-producing Enterobacterales from Spain. Int J Antimicrob Agents 2023; 61:106738. [PMID: 36736925 DOI: 10.1016/j.ijantimicag.2023.106738] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/05/2022] [Accepted: 01/21/2023] [Indexed: 02/05/2023]
Abstract
Metallo-β-lactamase (MBL)-producing Enterobacterales are of particular concern because they are widely disseminated and difficult to treat, being resistant to almost all β-lactam antibiotics. Aztreonam is not hydrolysed by MBLs but is labile to serine β-lactamases (SBLs), which are usually co-produced by MBL-producing Enterobacterales. This study investigated the activity of aztreonam in combination with novel β-lactamase inhibitors (BLIs) against a national multi-centre study collection of strains co-producing MBLs and SBLs. Fifty-five clinical isolates co-producing MBLs (41 VIM producers, 10 NDM producers and 4 IMP producers) and SBLs were selected, and whole-genome sequencing (WGS) was performed. The minimum inhibitory concentration (MIC) values of aztreonam, aztreonam/avibactam, aztreonam/relebactam, aztreonam/zidebactam, aztreonam/taniborbactam, aztreonam/vaborbactam and aztreonam/enmetazobactam were determined. β-lactam/BLI resistance mechanisms were analysed by WGS. All BLIs decreased the MIC values of aztreonam for strains that were not susceptible to aztreonam. Aztreonam/zidebactam (MIC ≤1 mg/L for 96.4% of isolates), aztreonam/avibactam (MIC ≤1 mg/L for 92.7% of isolates) and aztreonam/taniborbactam (MIC ≤1 mg/L for 87.3 % of isolates) were the most active combinations. For other aztreonam/BLI combinations, 50-70% of the isolates yielded MIC values ≤1 mg/L. WGS data revealed that mutations in PBP3, defective OmpE35/OmpK35 porins, and the presence of extended-spectrum β-lactamases and class C β-lactamases were some of the resistance mechanisms involved in reduced susceptibility to aztreonam/BLIs. Combinations of aztreonam with new BLIs show promising activity against Enterobacterales co-producing MBLs and SBLs, particularly aztreonam/zidebactam, aztreonam/avibactam and aztreonam/taniborbactam. The present results show that these novel drugs may represent innovative therapeutic strategies by their use in yet-unexplored combinations as solutions for difficult-to-treat infections.
Collapse
Affiliation(s)
- Juan Carlos Vázquez-Ucha
- Microbiology Department, University Hospital A Coruña, Institute of Biomedical Research of A Coruña, A Coruña, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| | - Isaac Alonso-Garcia
- Microbiology Department, University Hospital A Coruña, Institute of Biomedical Research of A Coruña, A Coruña, Spain
| | - Paula Guijarro-Sánchez
- Microbiology Department, University Hospital A Coruña, Institute of Biomedical Research of A Coruña, A Coruña, Spain
| | - Cristina Lasarte-Monterrubio
- Microbiology Department, University Hospital A Coruña, Institute of Biomedical Research of A Coruña, A Coruña, Spain
| | - Laura Álvarez-Fraga
- Microbiology Department, University Hospital A Coruña, Institute of Biomedical Research of A Coruña, A Coruña, Spain
| | - Arnau Cendón-Esteve
- Microbiology Department, University Hospital A Coruña, Institute of Biomedical Research of A Coruña, A Coruña, Spain
| | - Michelle Outeda
- Microbiology Department, University Hospital A Coruña, Institute of Biomedical Research of A Coruña, A Coruña, Spain
| | - Romina Maceiras
- Microbiology Department, University Hospital A Coruña, Institute of Biomedical Research of A Coruña, A Coruña, Spain
| | - Andrea Peña-Escolano
- Microbiology Department, University Hospital A Coruña, Institute of Biomedical Research of A Coruña, A Coruña, Spain
| | - Marta Martínez-Guitián
- NANOBIOFAR, Centre for Research in Molecular Medicine and Chronic Diseases, Universidad de Santiago de Compostela, Santiago de Compostela, Spain; Microbiology Department, University Hospital A Coruña, Institute of Biomedical Research of A Coruña, University of A Coruña, A Coruña, Spain
| | - Jorge Arca-Suárez
- Microbiology Department, University Hospital A Coruña, Institute of Biomedical Research of A Coruña, A Coruña, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Germán Bou
- Microbiology Department, University Hospital A Coruña, Institute of Biomedical Research of A Coruña, A Coruña, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandro Beceiro
- Microbiology Department, University Hospital A Coruña, Institute of Biomedical Research of A Coruña, A Coruña, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
5
|
Yang F, Zhao Q, Wang L, Wu J, Jiang L, Sheng L, Zhang L, Xue Z, Yi M. Diminished Susceptibility to Cefoperazone/Sulbactam and Piperacillin/Tazobactam in Enterobacteriaceae Due to Narrow-Spectrum β-Lactamases as Well as Omp Mutation. Pol J Microbiol 2022; 71:251-256. [PMID: 35716168 PMCID: PMC9252146 DOI: 10.33073/pjm-2022-023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/30/2022] [Indexed: 11/05/2022] Open
Abstract
Cefoperazone/sulbactam (CSL) and piperacillin/tazobactam (TZP) are commonly used in clinical practice in China because of their excellent antimicrobial activity. CSL and TZP-nonsusceptible Enterobacteriaceae are typically resistant to extended-spectrum cephalosporins such as ceftriaxone (CRO). However, 11 nonrepetitive Enterobacteriaceae strains, which were resistant to CSL and TZP yet susceptible to CRO, were collected from January to December 2020. Antibiotic susceptibility tests and whole-genome sequencing were conducted to elucidate the mechanism for this rare phenotype. Antibiotic susceptibility tests showed that all isolates were amoxicillin/clavulanic-acid resistant and sensitive to ceftazidime, cefepime, cefepime/tazobactam, cefepime/zidebactam, ceftazidime/avibactam, and ceftolozane/tazobactam. Whole-genome sequencing revealed three of seven Klebsiella pneumoniae strains harbored bla SHV-1 only, and four harbored bla SHV-1 and bla TEM-1B. Two Escherichia coli strains carried bla TEM-1B only, while two Klebsiella oxytoca isolates harbored bla OXY-1-3 and bla OXY-1-1, respectively. No mutation in the β-lactamase gene and promoter sequence was found. Outer membrane protein (Omp) gene detection revealed that numerous missense mutations of OmpK36 and OmpK37 were found in all strains of K. pneumoniae. Numerous missense mutations of OmpK36 and OmpK35 and OmpK37 deficiency were found in one K. oxytoca strain, and no OmpK gene was found in the other. No Omp mutations were found in E. coli isolates. These results indicated that narrow spectrum β-lactamases, TEM-1, SHV-1, and OXY-1, alone or in combination with Omp mutation, contributed to the resistance to CSL and TZP in CRO-susceptible Enterobacteriaceae. Antibiotic susceptibility tests Antibiotics Breakpoint, (μg/ml) Klebsiella pneumoniae Escherichia cou Klebriehd axyoca E1 E3 E4 E7 E9 E10 E11 E6 E8 E2 E5 CRO ≤1≥4 ≤0.5 ≤0.5 ≤0.5 ≤0.5 1 ≤0.5 1 ≤0.5 ≤0.5 1 1 CAZ 4 ≥16 1 2 1 4 4 4 4 2 4 1 1 FEP ≤2 216 1 1 0.25 1 2 2 2 0.5 2 1 1 AMC ≤8 ≥32 ≥128 ≥128 ≥128 ≥128 ≥128 ≥128 ≥128 ≥128 ≥128 ≥128 ≥128 CSL ≤16 ≥64 64 64 64 64 ≥128 128 ≥128 64 128 128 ≥128 TZP ≤16 ≥128 ≥256 ≥256 ≥256 ≥256 2256 2256 ≥256 ≥256 ≥256 ≥256 ≥256 FPT ≤2 ≥16 1 0.5 0.06 0.125 2 1 2 0.25 1 0.125 0.25 FPZ ≤2 216 0.25 0.25 0.06 0.125 0.25 0.25 1 0.125 0.25 0.125 0.125 CZA ≤8 216 1 0.5 0.25 0.25 1 0.25 1 0.5 0.5 0.5 0.25 CZT ≤2 28 2 1 0.5 1 2 2 2 1 1 2 2 CROceftriaxone, CAZceftazidime, FEPcefepime, AMC:amoxicillin clavulanic-acid, CSLcefoperazone/sulbactam, TZP:piperadllin/tazobactam, FPT:cefepime tazobactam, FPZ:cefepime/zidebactam, CZA:ceftazidime/avibactam, CZTceftolozane/tazobactam Gene sequencing results Number Strain ST p-Lactamase gene Promoter sequence mutation Omp mutation El Kpn 45 blaSHV-1, blaTEM-lB none OmpK36, OmpK3 7 E3 Kpn 45 blaSHV-1, blaTEM-lB none OmpK36. OmpK3 7 E4 Kpn 2854 blaSHV-1 none OmpK36, OmpK3 7 E7 Kpn 2358 blaSHV-1 - blaTEM-lB none OmpK36, OmpK3 7 E9 Kpn 2358 blaSHV-1. blaTEM-lB none OmpK36. OmpK3 7 E10 Kpn 18 9 blaSHV-1 none OmpK36. OmpK3 7 Ell Kpn 45 blaSHV-1 none OmpK36, OmpK3 7 E6 Eco 88 blaTEM-lB none none ES Eco 409 blaTEM-1B none none E2 Kox 194 blaOXY-1-3 none OmpK36 mutations. OmpK35 and OmpK 37 deficiency E5 Kox 11 blaOXY-1-1 none no OmpK (OmpK3 5, OmpK36 and OmpK37) gene found.
Collapse
Affiliation(s)
- Fengzhen Yang
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Qi Zhao
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Lipeng Wang
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Jinying Wu
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Lihua Jiang
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Li Sheng
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Leyan Zhang
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Zhaoping Xue
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Maoli Yi
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|