1
|
Chen C, Wu B, Li X, Jin Y, Zhang H, Liu B, Zhang Z, Li N. Integrated Device for Cancer Nucleic Acid Biomarker Detection at Body Temperature. MICROMACHINES 2025; 16:192. [PMID: 40047709 PMCID: PMC11857440 DOI: 10.3390/mi16020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 03/09/2025]
Abstract
The quantitative analysis of nucleic acid markers is extensively utilized in cancer detection. However, it faces significant challenges, such as the need for specialized detection devices and the inherent complexity of testing procedures. To address these issues, this study proposes a simplified, rapid, and user-friendly platform for cancer nucleic acid marker detection. We firstly designed a polydimethylsiloxane (PDMS) device for the isothermal amplification reaction of nucleic acid biomarkers based on reverse-transcription recombinase-aided amplification (RT-RAA) technology. Specifically, three potential cancer nucleic acid biomarkers, carcinoembryonic antigen (CEA), prostate-specific antigen (PSA), and prostate cancer antigen 3 (PCA3) were amplified from human serum or urine samples in the PDMS device at body temperature. The reaction chamber was directly integrated with nucleic acid test strips labeled with colloidal gold nanoparticles, allowing for the visual observation of the detection results for the amplification products. The optimal reaction conditions, such as pH, reaction time, antibody, and streptavidin concentration, were defined after a series of optimization studies. The findings demonstrated that the optimal RT-RAA reaction time was 20 min, the primary antibodies were labeled with colloidal gold to the greatest extent at pH 8.5, and the optimal concentrations of secondary antibody and streptavidin were 1.0 mg/mL and 0.5 mg/mL, respectively. Furthermore, this novel detection approach could not only exhibit excellent sensitivity and specificity but also show high accuracy for the analysis of nucleic acid biomarkers in both clinical serum and urine samples. Therefore, the simplified and more convenient operation platform provides a new insight for the semi-quantitative analysis of cancer nucleic acid biomarkers and the rapid screening of early cancer, thereby offering a promising alternative to oncological point-of-care testing (POCT) diagnostics.
Collapse
Affiliation(s)
- Chang Chen
- Central Hospital of Dalian University of Technology, Dalian 116033, China
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Bin Wu
- China Certification & Inspection Group LiaoNing Co., Ltd., Dalian 116001, China
| | - Xuesong Li
- Central Hospital of Dalian University of Technology, Dalian 116033, China
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Yuhang Jin
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Hangyu Zhang
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Zhengyao Zhang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Na Li
- Central Hospital of Dalian University of Technology, Dalian 116033, China
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
2
|
Dong Y, Zhu J, Pan N. Recent advances in rapid detection of Helicobacter pylori by lateral flow assay. Arch Microbiol 2025; 207:35. [PMID: 39820420 DOI: 10.1007/s00203-025-04239-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/28/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Infection with H. pylori (Helicobacter pylori) is the most prevalent human infection worldwide and is strongly associated with many gastrointestinal disorders, including gastric cancer. Endoscopy is mainly used to diagnose H. pylori infection in gastric biopsies. However, this approach is invasive, time-consuming and expensive. On the other hand, serology-based methods can be considered as a non-invasive approach to detecting H. pylori infection. The LFA (lateral flow assay) serves as a rapid point-of-care diagnostic tool. This paper-based platform facilitates the detection and quantification of analytes within human fluids such as blood, serum and urine. Due to ease of production, rapid results, and low costs, LFAs have a wide application in clinical laboratories and hospitals. In this comprehensive review, we examined LFA-based approaches for detection of H. pylori infection from human fluids and compare them with other high-sensitivity methods like ELISA (Enzyme-linked immunosorbent assay). Furthermore, we reviewed methods to elevate LFA sensitivity during H. pylori infection including, CRISPR/Cas system and isothermal amplification approaches. The development and optimization of novel labeling agents such as nanozyme to enhance the performance of LFA devices in detecting H. pylori were reviewed. These innovations aim to improve signal amplification and stability, thereby increasing the diagnostic accuracy of LFA devices. A combination of advances in LFA technology and molecular insight could significantly improve diagnostic accuracy, resulting in a significant improvement in clinical and remote diagnostic accuracy.
Collapse
Affiliation(s)
- Yanjin Dong
- Department of Laboratory Medicine, Jinan Second People's Hospital of Shandong Province (Jinan Eye Hospital), No. 148, Jingyi Road, Jinan, 250022, Shandong, China
| | - Jie Zhu
- Department of Laboratory Medicine, Shandong First Medical University Affiliated Provincial Hospital (East Hospital), No. 9677, Jingshi Road, Lixia District, Jinan, 250098, Shandong, China
| | - Ning Pan
- Department of Laboratory Medicine, Jinan Second People's Hospital of Shandong Province (Jinan Eye Hospital), No. 148, Jingyi Road, Jinan, 250022, Shandong, China.
| |
Collapse
|
3
|
Nguyen TMN, Tran VH, Ha TMT. Helicobacter pylori cagA, vacA, and iceA genotypes and clinical outcomes: a cross-sectional study in central Vietnam. Braz J Microbiol 2024; 55:1393-1404. [PMID: 38676790 PMCID: PMC11153385 DOI: 10.1007/s42770-024-01328-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 04/01/2024] [Indexed: 04/29/2024] Open
Abstract
Helicobacter pylori is the most common cause of gastroduodenal diseases. The concept that cagA-positive H. pylori is a risk factor for gastric cancer appears to be true only for H. pylori strains from Western countries. Other virulent genes may have a synergistic interaction with cagA during pathogenesis. This study aims to investigate H. pylori cagA, vacA, and iceA prevalence, genotypes, and their association to clinical outcomes in Vietnamese patients. The cagA status and vacA and iceA genotypes were determined using the PCR technique on DNA extracted from gastric biopsies of 141 patients with gastroduodenal diseases. After performing molecular analysis for cagA, vacA, and iceA genes, samples with mixed H. pylori strains, positivity, or negativity for both cagA and cagPAI-empty site, or unidentified genotypes were excluded. Finally, 107 samples were examined. The presence of the cagA, vacA, and iceA genes were detected in 77.6%, 100%, and 80.4% of cases, respectively. Notably, cagA( +) with EPIYA-ABD, vacA s1i1m1, vacA s1i1m2, iceA1, and iceA2 accounted for 73.8%, 44.9%, 33.6%, 48.6%, and 31.8% of cases, respectively. Four iceA2 subtypes (24-aa, 59-aa, 94-aa, and 129-aa variants) were found, with the 59-aa variant the most prevalent (70.6%). The cagA( +)/vacAs1i1m1/iceA1 and cagA( +)/vacAs1i1m2/iceA1 combinations were found in 26.2% and 25.1% of cases, respectively. A multivariable logistic regression analysis was performed, after adjusting for age and gender, with the gastritis group was used as a reference control. Statistically significant associations were found between the vacA s1i1m2 genotype, the iceA1 variant, and the cagA( +)/vacAs1i1m2/iceA1 combination and gastric cancer; the adjusted ORs were estimated as 18.02 (95% CI: 3.39-95.81), 4.09 (95% CI: 1.1-15.08), and 16.19 (95% CI: 3.42-76.66), respectively. Interestingly, for the first time, our study found that vacA s1i1m2, but not vacA s1i1m1, was a risk factor for gastric cancer. This study illustrates the genetic diversity of the H. pylori cagA, vacA, and iceA genes across geographical regions and contributes to understanding the importance of these genotypes for clinical outcomes.
Collapse
Affiliation(s)
- Thi Mai Ngan Nguyen
- Department of Medical Genetics, University of Medicine and Pharmacy, Hue University, 6, Ngo Quyen Street, Hue City, 49100, Vietnam
| | - Van Huy Tran
- Department of Internal Medicine, University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
- Centre of Gastroenterology and Endoscopy, University of Medicine and Pharmacy Hospital, Hue University, Hue City, Vietnam
| | - Thi Minh Thi Ha
- Department of Medical Genetics, University of Medicine and Pharmacy, Hue University, 6, Ngo Quyen Street, Hue City, 49100, Vietnam.
- Institute of Biomedicine, University of Medicine and Pharmacy, Hue University, Hue City, Vietnam.
| |
Collapse
|
4
|
Wang Y, Chen X, Wang P, Tu F, Yu Y, Chen Q, Liu Z. A visual detection assay for Helicobacter pylori in saliva based on recombinase-aided amplification and peptide nucleic acid-assisted split DNAzyme probes. SENSORS AND ACTUATORS B: CHEMICAL 2023; 396:134582. [DOI: 10.1016/j.snb.2023.134582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
|
5
|
Wang D, Wang D, Liao K, Zhang B, Li S, Liu M, Lv L, Xue F. Optical detection using CRISPR-Cas12a of Helicobacter pylori for veterinary applications. Mikrochim Acta 2023; 190:455. [PMID: 37910191 DOI: 10.1007/s00604-023-06037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
Helicobacter pylori (H. pylori) is a zoonotic gastric microorganism capable of efficient interspecies transmission. Domesticated companion animals, particularly dogs and cats, serve as natural reservoirs for H. pylori. This phenomenon facilitates the extensive dissemination of H. pylori among households with pets. Hence, the prompt and precise identification of H. pylori in companion animals holds paramount importance for the well-being of both animals and their owners. With the assistance of Multienzyme Isothermal Rapid Amplification (MIRA) and CRISPR-Cas12a system, we successfully crafted a highly adaptable optical detection platform for H. pylori. Three sensor systems with corresponding visual interpretations were proposed. This study demonstrated a rapid turnaround time of approximately 45 min from DNA extraction to the result display. Moreover, this platform topped germiculture and real-time PCR in terms of sensitivity or efficiency in clinical diagnoses of 66 samples. This platform possesses significant potential as a versatile approach and represents the premiere application of CRISPR for the non-invasive detection of H. pylori in companion animals, thereby mitigating the dissemination of H. pylori among household members.
Collapse
Affiliation(s)
- Dian Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dafeng Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai Liao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Biqi Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuai Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Minghui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Linjie Lv
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
6
|
Zhang XR, Ma T, Wang YC, Hu S, Yang Y. Development of a Novel Method for the Clinical Visualization and Rapid Identification of Multidrug-Resistant Candida auris. Microbiol Spectr 2023; 11:e0491222. [PMID: 37098907 PMCID: PMC10269898 DOI: 10.1128/spectrum.04912-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/25/2023] [Indexed: 04/27/2023] Open
Abstract
Outbreaks of multidrug-resistant Candida auris infections, associated with a mortality rate of 30% to 60%, are of serious global concern. Candida auris demonstrates high transmission rates in hospital settings; however, its rapid and accurate identification using currently available clinical identification techniques is challenging. In this study, we developed a rapid and effective method for detecting C. auris based on recombinase-aided amplification combined with lateral flow strips (RAA-LFS). We also screened the appropriate reaction conditions. Furthermore, we investigated the specificity and sensitivity of the detection system and its ability to distinguish other fungal strains. Candida auris was accurately identified and differentiated from related species at 37°C within 15 min. The minimum detection limit was 1 CFU (or 10 fg/reaction) and was not affected by high concentrations of related species or host DNA. The simple and cost-efficient detection method established in this study exhibited high specificity and sensitivity and successfully detected C. auris in simulated clinical samples. Compared with other traditional detection methods, this method greatly reduces the time and cost of testing and is thus suitable for hospitals or clinics in remote underfunded areas for screening C. auris infection and colonization. IMPORTANCE Candida auris is a highly lethal, multidrug-resistant, invasive fungus. However, conventional methods of C. auris identification are time-consuming and laborious and have low sensitivity and high error rates. In this study, a new molecular diagnostic method based on recombinase-aided amplification combined with lateral flow strips (RAA-LFS) was developed, and accurate results could be obtained by catalyzing the reaction at body temperature for 15 min. This method can be used for rapid clinical detection of C. auris, consequently saving valuable treatment time for patients.
Collapse
Affiliation(s)
- X. R. Zhang
- Bioinformatics Center of AMMS, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
- School of Life Sciences, Hebei University, Baoding, People’s Republic of China
| | - T. Ma
- Bioinformatics Center of AMMS, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Y. C. Wang
- Bioinformatics Center of AMMS, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - S. Hu
- Bioinformatics Center of AMMS, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Y. Yang
- Bioinformatics Center of AMMS, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Zou X, Dong C, Ni Y, Gao Q. Rapid Detection of Strawberry Mild Yellow Edge Virus with a Lateral Flow Strip Reverse Transcription Recombinase Polymerase Amplification Assay. Curr Microbiol 2022; 79:365. [PMID: 36253613 DOI: 10.1007/s00284-022-03045-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 09/16/2022] [Indexed: 11/03/2022]
Abstract
Strawberry mild yellow edge virus (SMYEV) is a latent virus that severely affects the yield and quality of strawberry fruit. The technology suitable for rapid and accurate detection of SMYEV on site is important to effectively control its spread. In this study, a reverse transcription recombinase polymerase amplification combined with lateral flow strip (SMYEV-RT-RPA-LF), targeting the conserved genome of Beijing SMYEV isolate, was established to diagnose SMYEV in strawberries. The SMYEV-RT-RPA-LF assay showed no cross-reaction with other strawberry viruses. The sensitivity of SMYEV-RT-RPA-L assay was 100 times higher than that of RT-PCR (10 pg/μL). In addition, through the detection of suspected samples in the field, it was found that the accuracy of SMYEV-RT-RPA-L assay was consistent with the RT-PCR results. However, compared with RT-PCR, SMYEV-RT-RPA-LF assay has the advantages of simple operation, time savings, and high specificity and sensitivity, indicating the potential application of SMYEV-RT-RPA-LF in the rapid field diagnosis of SMYEV.
Collapse
Affiliation(s)
- Xiaohua Zou
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| | - Chao Dong
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Yiduo Ni
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Qinghua Gao
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| |
Collapse
|