1
|
Talamás-Lara D, Acosta-Virgen K, Chávez-Munguía B, Lagunes-Guillén A, Salazar-Villatoro L, Espinosa-Cantellano M, Martínez-Palomo A. Golgi apparatus components in Entamoeba histolytica and Entamoeba dispar after monensin treatment. Microsc Res Tech 2021; 84:1887-1896. [PMID: 33675108 DOI: 10.1002/jemt.23745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/23/2021] [Accepted: 02/19/2021] [Indexed: 11/07/2022]
Abstract
Highly dynamic ribosomes, glycogen granules, thinly fibrillar material, and multiple membrane-bound vesicles are embedded in the matrix-rich cytoplasm of Entamoeba spp. trophozoites. The absence of a Golgi apparatus in these amoebae has been commonly accepted. Here we challenge this observation by incubating Entamoeba histolytica and Entamoeba dispar with monensin, an ionophore that produces swelling of the Golgi apparatus. We observe changes in the trophozoites through standard transmission electron microscopy, cryofixation and cryosubstitution, and analyze the label and expression of known resident proteins of the cis-GM130 and trans-TGN38 Golgi network through confocal microscopy and Western blot assays. Cryosubstitution and standard methods using the treatment, preserved membranous lamellae resembling Golgi components. GM130 and TGN38 Golgi antigens were found by immunoelectron, immunoblot, and co-localization by confocal microscopy using the reagent NBD C6-ceramide. Our results indicate that previously undetected Golgi apparatus components are present in the cytoplasm of E. histolytica and E. dispar.
Collapse
Affiliation(s)
- Daniel Talamás-Lara
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Karla Acosta-Virgen
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Anel Lagunes-Guillén
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Lizbeth Salazar-Villatoro
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Martha Espinosa-Cantellano
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Adolfo Martínez-Palomo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| |
Collapse
|
2
|
Marchat LA, Hernández-de la Cruz ON, Ramírez-Moreno E, Silva-Cázares MB, López-Camarillo C. Proteomics approaches to understand cell biology and virulence of Entamoeba histolytica protozoan parasite. J Proteomics 2020; 226:103897. [PMID: 32652218 DOI: 10.1016/j.jprot.2020.103897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/09/2020] [Accepted: 07/06/2020] [Indexed: 11/19/2022]
Abstract
Entamoeba histolytica is the primitive eukaryotic parasite responsible of human amoebiasis, a disease characterized by bloody intestinal diarrhea and invasive extraintestinal illness. The knowledge of the complete genome sequence of virulent E. histolytica and related non-pathogenic species allowed the development of novel genome-wide methodological approaches including protein expression profiling and cellular proteomics in the so called post-genomic era. Proteomics studies have greatly increased our understanding of the cell biology of this ancient parasite. This review summarizes the current works concerning proteomics studies on cell biology, life cycle, virulence and pathogenesis, novel therapies, and protein expression regulation mechanisms in E. histolytica parasite. Also, we discuss the use of proteomics data for the development of novel therapies, the identification of potential disease biomarkers and differential diagnosis between species. SIGNIFICANCE: Entamoeba histolytica is the unicellular protozoan parasite responsible of human amoebiasis, a serious disease with worldwide distribution characterized by bloody intestinal diarrhea and invasive extraintestinal illness including peritonitis and liver, pulmonary and brain abscesses. The post-genomic era allowed the development of proteomic studies including protein expression profiling and cellular proteomics. These proteomics studies have greatly increased our understanding on cell biology, life cycle (cyst-trophozoite conversion), virulence, pathogenesis, novel therapies, and protein expression regulation mechanisms in E. histolytica. Importantly, proteomics has revealed the identity of proteins related to novel therapies, and the identification of potential disease biomarkers and proteins with use in diagnosis between species. Hopefully in the coming years, and through the use of more sophisticated omics tools, including deep proteomics, a more complete set of proteins involved in the aforementioned cellular processes can be obtained to understand the biology of this ancient eukaryote.
Collapse
Affiliation(s)
- Laurence A Marchat
- Programa en Biomedicina Molecular y Red de Biotecnología, ENMH-Instituto Politécnico Nacional, CDMX, México.
| | | | - Esther Ramírez-Moreno
- Programa en Biomedicina Molecular y Red de Biotecnología, ENMH-Instituto Politécnico Nacional, CDMX, México
| | - Macrina B Silva-Cázares
- Doctorado Institucional en Ingeniería y Ciencias de Materiales, Coordinación Académica Región Altiplano, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, CDMX, México.
| |
Collapse
|
3
|
Santos HJ, Imai K, Makiuchi T, Tomii K, Horton P, Nozawa A, Okada K, Tozawa Y, Nozaki T. Novel lineage-specific transmembrane β-barrel proteins in the endoplasmic reticulum of Entamoeba histolytica. FEBS J 2019; 286:3416-3432. [PMID: 31045303 DOI: 10.1111/febs.14870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 03/06/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022]
Abstract
β-barrel outer membrane proteins (BOMPs) are essential components of outer membranes of Gram-negative bacteria and endosymbiotic organelles, usually involved in the transport of proteins and substrates across the membrane. Based on the analysis of our in silico BOMP predictor data for the Entamoeba histolytica genome, we detected a new transmembrane β-barrel domain-containing protein, EHI_192610. Sequence analysis revealed that this protein is unique to Entamoeba species, and it exclusively clusters with a homolog, EHI_099780, which is similarly lineage specific. Both proteins possess an N-terminal signal peptide sequence as well as multiple repeats that contain dyad hydrophobic periodicities. Data from immunofluorescence assay of trophozoites expressing the respective candidates showed the absence of colocalization with mitosomal marker, and interestingly demonstrated partial colocalization with endoplasmic reticulum (ER) proteins instead. Integration to organellar membrane was supported by carbonate fractionation assay and immunoelectron microscopy. CD analysis of reconstituted proteoliposomes containing EHI_192610 showed a spectrum demonstrating a predominant β-sheet structure, suggesting that this protein is β-strand rich. Furthermore, the presence of repeat regions with predicted transmembrane β-strand pairs in both EHI_192610 and EHI_099780, is consistent with the hypothesis that BOMPs originated from the amplification of ββ-hairpin modules, suggesting that the two Entamoeba-specific proteins are novel β-barrels, intriguingly localized partially to the ER membrane.
Collapse
Affiliation(s)
- Herbert J Santos
- Graduate School of Medicine, The University of Tokyo, Japan.,Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kenichiro Imai
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Takashi Makiuchi
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Japan
| | - Kentaro Tomii
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Paul Horton
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Akira Nozawa
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Kenta Okada
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, Japan
| | - Tomoyoshi Nozaki
- Graduate School of Medicine, The University of Tokyo, Japan.,Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
4
|
Santos HJ, Hanadate Y, Imai K, Nozaki T. An Entamoeba-Specific Mitosomal Membrane Protein with Potential Association to the Golgi Apparatus. Genes (Basel) 2019; 10:genes10050367. [PMID: 31086122 PMCID: PMC6563013 DOI: 10.3390/genes10050367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/13/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022] Open
Abstract
The aerobic mitochondrion had undergone evolutionary diversification, most notable among lineages of anaerobic protists. Entamoeba is one of the genera of parasitic protozoans that lack canonical mitochondria, and instead possess mitochondrion-related organelles (MROs), specifically mitosomes. Entamoeba mitosomes exhibit functional reduction and divergence, most exemplified by the organelle’s inability to produce ATP and synthesize iron-sulfur cluster. Instead, this organelle is capable of sulfate activation, which has been linked to amoebic stage conversion. In order to understand other unique features and components of this MRO, we utilized an in silico prediction tool to screen transmembrane domain containing proteins in the mitosome proteome. Here, we characterize a novel lineage-specific mitosomal membrane protein, named Entamoeba transmembrane mitosomal protein of 30 kDa (ETMP30; EHI_172170), predicted to contain five transmembrane domains. Immunofluorescence analysis demonstrated colocalization of hemagglutinin (HA)-tagged ETMP30 with the mitosomal marker, adenosine-5’-phosphosulfate kinase. Mitosomal membrane localization was indicated by immunoelectron microscopy analysis, which was supported by carbonate fractionation assay. Transcriptional gene silencing successfully repressed RNA expression by 60%, and led to a defect in growth and partial elongation of mitosomes. Immunoprecipitation of ETMP30 from ETMP30-HA-expressing transformant using anti-HA antibody pulled down one interacting protein of 126 kDa. Protein sequencing by mass spectrometry revealed this protein as a cation-transporting P-type ATPase, previously reported to localize to vacuolar compartments/Golgi-like structures, hinting at a possible mitosome-vacuole/Golgi contact site.
Collapse
Affiliation(s)
- Herbert J Santos
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Yuki Hanadate
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Kenichiro Imai
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan.
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan.
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
5
|
Hernández‐Cuevas NA, Jhingan GD, Petropolis D, Vargas M, Guillen N. Acetylation is the most abundant actin modification in
Entamoeba histolytica
and modifications of actin's amino‐terminal domain change cytoskeleton activities. Cell Microbiol 2018; 21:e12983. [DOI: 10.1111/cmi.12983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/27/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022]
Affiliation(s)
| | | | - Debora Petropolis
- Institut Pasteur Unité Biologie Cellulaire du Parasitisme Paris France
- INSERM Unit 786 Paris France
| | - Miguel Vargas
- Departamento de Biomedicina Molecular Instituto Politécnico Nacional, Centro de Investigación y de Estudios Avanzados CINVESTAV Mexico City Mexico
| | - Nancy Guillen
- Institut Pasteur Unité Biologie Cellulaire du Parasitisme Paris France
- INSERM Unit 786 Paris France
- Centre National de la Recherche Scientifique, ERL9195 Paris France
| |
Collapse
|