1
|
Liu W, Kurkewich JL, Stoddart A, Khan S, Anandan D, Gaubil AN, Wolfgeher DJ, Jueng L, Kron SJ, McNerney ME. CUX1 regulates human hematopoietic stem cell chromatin accessibility via the BAF complex. Cell Rep 2024; 43:114227. [PMID: 38735044 PMCID: PMC11163479 DOI: 10.1016/j.celrep.2024.114227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/16/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024] Open
Abstract
CUX1 is a homeodomain-containing transcription factor that is essential for the development and differentiation of multiple tissues. CUX1 is recurrently mutated or deleted in cancer, particularly in myeloid malignancies. However, the mechanism by which CUX1 regulates gene expression and differentiation remains poorly understood, creating a barrier to understanding the tumor-suppressive functions of CUX1. Here, we demonstrate that CUX1 directs the BAF chromatin remodeling complex to DNA to increase chromatin accessibility in hematopoietic cells. CUX1 preferentially regulates lineage-specific enhancers, and CUX1 target genes are predictive of cell fate in vivo. These data indicate that CUX1 regulates hematopoietic lineage commitment and homeostasis via pioneer factor activity, and CUX1 deficiency disrupts these processes in stem and progenitor cells, facilitating transformation.
Collapse
Affiliation(s)
- Weihan Liu
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | - Angela Stoddart
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Saira Khan
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Dhivyaa Anandan
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Alexandre N Gaubil
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Donald J Wolfgeher
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Lia Jueng
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Stephen J Kron
- The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Megan E McNerney
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA; The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Pediatrics, Section of Hematology/Oncology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
2
|
Mühlhofer M, Offensperger F, Reschke S, Wallmann G, Csaba G, Berchtold E, Riedl M, Blum H, Haslbeck M, Zimmer R, Buchner J. Deletion of the transcription factors Hsf1, Msn2 and Msn4 in yeast uncovers transcriptional reprogramming in response to proteotoxic stress. FEBS Lett 2024; 598:635-657. [PMID: 38366111 DOI: 10.1002/1873-3468.14821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/18/2024]
Abstract
The response to proteotoxic stresses such as heat shock allows organisms to maintain protein homeostasis under changing environmental conditions. We asked what happens if an organism can no longer react to cytosolic proteotoxic stress. To test this, we deleted or depleted, either individually or in combination, the stress-responsive transcription factors Msn2, Msn4, and Hsf1 in Saccharomyces cerevisiae. Our study reveals a combination of survival strategies, which together protect essential proteins. Msn2 and 4 broadly reprogram transcription, triggering the response to oxidative stress, as well as biosynthesis of the protective sugar trehalose and glycolytic enzymes, while Hsf1 mainly induces the synthesis of molecular chaperones and reverses the transcriptional response upon prolonged mild heat stress (adaptation).
Collapse
Affiliation(s)
- Moritz Mühlhofer
- Center for Protein Assemblies, Department of Bioscience, Technische Universität München, Garching, Germany
| | - Felix Offensperger
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München, München, Germany
| | - Sarah Reschke
- Laboratory for Functional Genome Analysis at the Gene Center, LMU München, München, Germany
| | - Georg Wallmann
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München, München, Germany
| | - Gergely Csaba
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München, München, Germany
| | - Evi Berchtold
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München, München, Germany
| | - Maximilian Riedl
- Center for Protein Assemblies, Department of Bioscience, Technische Universität München, Garching, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis at the Gene Center, LMU München, München, Germany
| | - Martin Haslbeck
- Center for Protein Assemblies, Department of Bioscience, Technische Universität München, Garching, Germany
| | - Ralf Zimmer
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München, München, Germany
| | - Johannes Buchner
- Center for Protein Assemblies, Department of Bioscience, Technische Universität München, Garching, Germany
| |
Collapse
|
3
|
Theophanous CN, Wolfgeher DJ, Farooq AV, Hilkert Rodriguez S. Biomarkers of Pediatric Cataracts: A Proteomics Analysis of Aqueous Fluid. Int J Mol Sci 2023; 24:ijms24109040. [PMID: 37240389 DOI: 10.3390/ijms24109040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Cataracts are among the most common causes of childhood vision loss worldwide. This study seeks to identify differentially expressed proteins in the aqueous humor of pediatric cataract patients. Samples of aqueous humor were collected from pediatric and adult cataract patients and subjected to mass spectrometry-based proteomic analysis. Samples of pediatric cataracts were grouped by subtype and compared to adult samples. Differentially expressed proteins in each subtype were identified. Gene ontology analysis was performed using WikiPaths for each cataract subtype. Seven pediatric patients and ten adult patients were included in the study. Of the pediatric samples, all seven (100%) were male, three (43%) had traumatic cataracts, two (29%) had congenital cataracts, and two (29%) had posterior polar cataracts. Of the adult patients, seven (70%) were female and seven (70%) had predominantly nuclear sclerotic cataracts. A total of 128 proteins were upregulated in the pediatric samples, and 127 proteins were upregulated in the adult samples, with 75 proteins shared by both groups. Gene ontology analysis identified inflammatory and oxidative stress pathways as upregulated in pediatric cataracts. Inflammatory and oxidative stress mechanisms may be involved in pediatric cataract formation and warrant further investigation.
Collapse
Affiliation(s)
- Christos N Theophanous
- Department of Ophthalmology and Visual Science, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Donald J Wolfgeher
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Asim V Farooq
- Department of Ophthalmology and Visual Science, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sarah Hilkert Rodriguez
- Department of Ophthalmology and Visual Science, University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
4
|
The C-terminal domain of Hsp70 is responsible for paralog-specific regulation of ribonucleotide reductase. PLoS Genet 2022; 18:e1010079. [PMID: 35417483 PMCID: PMC9037926 DOI: 10.1371/journal.pgen.1010079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/25/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022] Open
Abstract
The Hsp70 family of molecular chaperones is well-conserved and expressed in all organisms. In budding yeast, cells express four highly similar cytosolic Hsp70s Ssa1, 2, 3 and 4 which arose from gene duplication. Ssa1 and 2 are constitutively expressed while Ssa3 and 4 are induced upon heat shock. Recent evidence suggests that despite their amino acid similarity, these Ssas have unique roles in the cell. Here we examine the relative importance of Ssa1-4 in the regulation of the enzyme ribonucleotide reductase (RNR). We demonstrate that cells expressing either Ssa3 or Ssa4 as their sole Ssa are compromised for their resistance to DNA damaging agents and activation of DNA damage response (DDR)-regulated transcription. In addition, we show that the steady state levels and stability of RNR small subunits Rnr2 and Rnr4 are reduced in Ssa3 or Ssa4-expressing cells, a result of decreased Ssa-RNR interaction. Interaction between the Hsp70 co-chaperone Ydj1 and RNR is correspondingly decreased in cells only expressing Ssa3 and 4. Through studies of Ssa2/4 domain swap chimeras, we determined that the C-terminal domain of Ssas are the source of this functional specificity. Taking together, our work suggests a distinct role for Ssa paralogs in regulating DNA replication mediated by C-terminus sequence variation. Cells require molecular chaperones to fold proteins into their active conformation. A major mystery however is why cells express so many highly-related and apparently redundant Hsp70 paralogs. We examined the role of four Hsp70 paralogs in budding yeast (Ssa1, 2, 3 and 4) on the activity of the ribonucleotide reductase (RNR complex). Importantly, we demonstrate there is selectivity of RNR subunits for Ssa1 and Ssa2 subunits, which is dictated by the co-chaperone Ydj1. Taken together, our work provides new insight into the functional specificity of Hsp70 paralogs using a native client protein.
Collapse
|
5
|
Krishnan M, Senagolage MD, Baeten JT, Wolfgeher DJ, Khan S, Kron SJ, McNerney ME. Genomic studies controvert the existence of the CUX1 p75 isoform. Sci Rep 2022; 12:151. [PMID: 34997000 PMCID: PMC8741762 DOI: 10.1038/s41598-021-03930-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/13/2021] [Indexed: 01/19/2023] Open
Abstract
CUX1, encoding a homeodomain-containing transcription factor, is recurrently deleted or mutated in multiple tumor types. In myeloid neoplasms, CUX1 deletion or mutation carries a poor prognosis. We have previously established that CUX1 functions as a tumor suppressor in hematopoietic cells across multiple organisms. Others, however, have described oncogenic functions of CUX1 in solid tumors, often attributed to truncated CUX1 isoforms, p75 and p110, generated by an alternative transcriptional start site or post-translational cleavage, respectively. Given the clinical relevance, it is imperative to clarify these discrepant activities. Herein, we sought to determine the CUX1 isoforms expressed in hematopoietic cells and find that they express the full-length p200 isoform. Through the course of this analysis, we found no evidence of the p75 alternative transcript in any cell type examined. Using an array of orthogonal approaches, including biochemistry, proteomics, CRISPR/Cas9 genomic editing, and analysis of functional genomics datasets across a spectrum of normal and malignant tissue types, we found no data to support the existence of the CUX1 p75 isoform as previously described. Based on these results, prior studies of p75 require reevaluation, including the interpretation of oncogenic roles attributed to CUX1.
Collapse
Affiliation(s)
- Manisha Krishnan
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA.,Department of Pathology, The University of Chicago, Chicago, IL, USA
| | | | - Jeremy T Baeten
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Donald J Wolfgeher
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Saira Khan
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Stephen J Kron
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA.,Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA.,The University of Chicago Medicine Comprehensive Cancer Center, University of Chicago, Chicago, IL, USA
| | - Megan E McNerney
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA. .,Department of Pathology, The University of Chicago, Chicago, IL, USA. .,Department of Pediatrics, The University of Chicago, Chicago, IL, USA. .,The University of Chicago Medicine Comprehensive Cancer Center, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
Croft T, Venkatakrishnan P, James Theoga Raj C, Groth B, Cater T, Salemi MR, Phinney B, Lin SJ. N-terminal protein acetylation by NatB modulates the levels of Nmnats, the NAD + biosynthetic enzymes in Saccharomyces cerevisiae. J Biol Chem 2020; 295:7362-7375. [PMID: 32299909 PMCID: PMC7247314 DOI: 10.1074/jbc.ra119.011667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
NAD+ is an essential metabolite participating in cellular biochemical processes and signaling. The regulation and interconnection among multiple NAD+ biosynthesis pathways are incompletely understood. Yeast (Saccharomyces cerevisiae) cells lacking the N-terminal (Nt) protein acetyltransferase complex NatB exhibit an approximate 50% reduction in NAD+ levels and aberrant metabolism of NAD+ precursors, changes that are associated with a decrease in nicotinamide mononucleotide adenylyltransferase (Nmnat) protein levels. Here, we show that this decrease in NAD+ and Nmnat protein levels is specifically due to the absence of Nt-acetylation of Nmnat (Nma1 and Nma2) proteins and not of other NatB substrates. Nt-acetylation critically regulates protein degradation by the N-end rule pathways, suggesting that the absence of Nt-acetylation may alter Nmnat protein stability. Interestingly, the rate of protein turnover (t½) of non-Nt-acetylated Nmnats did not significantly differ from those of Nt-acetylated Nmnats. Accordingly, deletion or depletion of the N-end rule pathway ubiquitin E3 ligases in NatB mutants did not restore NAD+ levels. Next, we examined whether the status of Nt-acetylation would affect the translation of Nmnats, finding that the absence of Nt-acetylation does not significantly alter the polysome formation rate on Nmnat mRNAs. However, we observed that NatB mutants have significantly reduced Nmnat protein maturation. Our findings indicate that the reduced Nmnat levels in NatB mutants are mainly due to inefficient protein maturation. Nmnat activities are essential for all NAD+ biosynthesis routes, and understanding the regulation of Nmnat protein homeostasis may improve our understanding of the molecular basis and regulation of NAD+ metabolism.
Collapse
Affiliation(s)
- Trevor Croft
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Padmaja Venkatakrishnan
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Christol James Theoga Raj
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Benjamin Groth
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Timothy Cater
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Michelle R Salemi
- Proteomic Core Facility, University of California, Davis, California 95616
| | - Brett Phinney
- Proteomic Core Facility, University of California, Davis, California 95616
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616.
| |
Collapse
|
7
|
Takakuwa JE, Nitika, Knighton LE, Truman AW. Oligomerization of Hsp70: Current Perspectives on Regulation and Function. Front Mol Biosci 2019; 6:81. [PMID: 31555664 PMCID: PMC6742908 DOI: 10.3389/fmolb.2019.00081] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022] Open
Abstract
The Hsp70 molecular chaperone in conjunction with Hsp90 and a suite of helper co-chaperones are required for the folding and subsequent refolding of a large proportion of the proteome. These proteins are critical for cell viability and play major roles in diseases of proteostasis which include neurodegenerative diseases and cancer. As a consequence, a large scientific effort has gone into understanding how chaperones such as Hsp70 function at the in vitro and in vivo level. Although many chaperones require constitutive self-interaction (dimerization and oligomerization) to function, Hsp70 has been thought to exist as a monomer, especially in eukaryotic cells. Recent studies have demonstrated that both bacterial and mammalian Hsp70 can exist as a dynamic pool of monomers, dimer, and oligomers. In this mini-review, we discuss the mechanisms and roles of Hsp70 oligomerization in Hsp70 function, as well as thoughts on how this integrates into well-established ideas of Hsp70 regulation.
Collapse
Affiliation(s)
| | | | | | - Andrew W. Truman
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
8
|
Knighton LE, Nitika, Waller SJ, Strom O, Wolfgeher D, Reitzel AM, Truman AW. Dynamic remodeling of the interactomes of Nematostella vectensis Hsp70 isoforms under heat shock. J Proteomics 2019; 206:103416. [PMID: 31233900 DOI: 10.1016/j.jprot.2019.103416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/24/2019] [Accepted: 06/10/2019] [Indexed: 02/07/2023]
Abstract
Heat shock protein 70s (Hsp70s) are a highly conserved class of molecular chaperones that fold a large proportion of the proteome. Nematostella vectensis (Nv) is an estuarine sea anemone that has emerged as a model species to characterize molecular responses to physiological stressors due to its exposure to diverse, extreme abiotic conditions. Previous transcriptional data has shown dramatic differences among expression profiles of three NvHsp70 isoforms (NvHsp70A, B and D) under stress but it is unknown if, and to what extent, the client proteins for these chaperones differ. In order to determine client specificity, NvHsp70A, B and D were expressed in Saccharomyces cerevisiae budding yeast lacking native Hsp70 and interacting proteins for each Hsp70 were determined with mass spectrometry in yeast ambient and heat shock conditions. Our analyses showed <50% of identified interacting proteins were common to all three anemone Hsp70s and 3-18% were unique to an individual Hsp70. Mapping of temperature induced interactions suggest that under stress a proportion of clients are transferred from NvHsp70A and NvHsp70D to NvHsp70B. Together, these data suggest a diverse set of interacting proteins for Hsp70 isoforms that likely determines the precise functions for Hsp70s in organismal acclimation and potentially adaptation. BIOLOGICAL SIGNIFICANCE: Although the Hsp70 family of molecular chaperones has been studied for >50 years, it is still not fully understood why organisms encode and express many highly-similar Hsp70 isoforms. The prevailing theory is that these isoforms have identical function, but are expressed under unique cellular conditions that include heat shock to cope with increased number of unfolded/misfolded proteins. The sea anemone Nematostella vectensis encodes three Hsp70 isoforms A, B and D that when expressed in yeast demonstrate unique functionalities. This study provides the interactome of NvHsp70s A, B and D and demonstrates that Hsp70 isoforms, while highly similar in sequence, have unique co-chaperone and client interactors.
Collapse
Affiliation(s)
- Laura E Knighton
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, USA
| | - Nitika
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, USA
| | - Shawn J Waller
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, USA
| | - Owen Strom
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, USA
| | - Donald Wolfgeher
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, USA
| | - Adam M Reitzel
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, USA.
| | - Andrew W Truman
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, USA.
| |
Collapse
|
9
|
Lotz SK, Knighton LE, Jones GW, Truman AW. Not quite the SSAme: unique roles for the yeast cytosolic Hsp70s. Curr Genet 2019; 65:1127-1134. [PMID: 31020385 DOI: 10.1007/s00294-019-00978-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/27/2022]
Abstract
The Heat Shock Protein 70s (Hsp70s) are an essential family of proteins involved in folding of new proteins and triaging of damaged proteins for proteasomal-mediated degradation. They are highly conserved in all organisms, with each organism possessing multiple highly similar Hsp70 variants (isoforms). These isoforms have been previously thought to be identical in function differing only in their spatio-temporal expression pattern. The model organism Saccharomyces cerevisiae (baker's yeast) expresses four Hsp70 isoforms Ssa1, 2, 3 and 4. Here, we review recent findings that suggest that despite their similarity, Ssa isoforms may have unique cellular functions.
Collapse
Affiliation(s)
- Sarah K Lotz
- Department of Biological Sciences, The University of North Carolina At Charlotte, Charlotte, NC, 28223, USA
| | - Laura E Knighton
- Department of Biological Sciences, The University of North Carolina At Charlotte, Charlotte, NC, 28223, USA
| | - Gary W Jones
- Centre for Biomedical Science Research, School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, UK
| | - Andrew W Truman
- Department of Biological Sciences, The University of North Carolina At Charlotte, Charlotte, NC, 28223, USA.
| |
Collapse
|
10
|
Knighton LE, Saa LP, Reitzel AM, Truman AW. Analyzing the Functionality of Non-native Hsp70 Proteins in Saccharomyces cerevisiae. Bio Protoc 2019; 9:e3389. [PMID: 32154330 DOI: 10.21769/bioprotoc.3389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Yeast are an ideal system to study Heat Shock Protein 70 (Hsp70) function in a cellular context. This protocol was generated to analyze the function of non-native Hsp70 proteins by expressing them as the sole cytosolic Hsp70 in yeast. As an initial step, Hsp70 variants (such as Ssa1 point mutants and non-yeast versions such as Nematostella vectensis NvHsp70A, B and D) are cloned into an appropriate expression plasmid. Next, these plasmids are transformed into ssa1-4Δ yeast [expressing native Ssa1 from an uracil-based (URA3) plasmid] which are subsequently cured of the original yeast on 5-Fluroorotic Acid (5-FOA). The resulting cells can be screened for a variety of phenotypes which match to the activity of well-studied cellular pathways.
Collapse
Affiliation(s)
- Laura E Knighton
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, USA
| | - Lizbeth P Saa
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, USA
| | - Adam M Reitzel
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, USA
| | - Andrew W Truman
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, USA
| |
Collapse
|
11
|
Novel insights into molecular chaperone regulation of ribonucleotide reductase. Curr Genet 2018; 65:477-482. [PMID: 30519713 DOI: 10.1007/s00294-018-0916-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 12/17/2022]
Abstract
The molecular chaperones Hsp70 and Hsp90 bind and fold a significant proportion of the proteome. They are responsible for the activity and stability of many disease-related proteins including those in cancer. Substantial effort has been devoted to developing a range of chaperone inhibitors for clinical use. Recent studies have identified the oncogenic ribonucleotide reductase (RNR) complex as an interactor of chaperones. While several generations of RNR inhibitor have been developed for use in cancer patients, many of these produce severe side effects such as nausea, vomiting and hair loss. Development of more potent, less patient-toxic anti-RNR strategies would be highly desirable. Inhibition of chaperones and associated co-chaperone molecules in both cancer and model organisms such as budding yeast result in the destabilization of RNR subunits and a corresponding sensitization to RNR inhibitors. Going forward, this may form part of a novel strategy to target cancer cells that are resistant to standard RNR inhibitors.
Collapse
|
12
|
The Hsp70 co-chaperone Ydj1/HDJ2 regulates ribonucleotide reductase activity. PLoS Genet 2018; 14:e1007462. [PMID: 30452489 PMCID: PMC6277125 DOI: 10.1371/journal.pgen.1007462] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 12/03/2018] [Accepted: 10/11/2018] [Indexed: 11/19/2022] Open
Abstract
Hsp70 is a well-conserved molecular chaperone involved in the folding, stabilization, and eventual degradation of many “client” proteins. Hsp70 is regulated by a suite of co-chaperone molecules that assist in Hsp70-client interaction and stimulate the intrinsic ATPase activity of Hsp70. While previous studies have shown the anticancer target ribonucleotide reductase (RNR) is a client of Hsp70, the regulatory co-chaperones involved remain to be determined. To identify co-chaperone(s) involved in RNR activity, 28 yeast co-chaperone knockout mutants were screened for sensitivity to the RNR-perturbing agent Hydroxyurea. Ydj1, an important cytoplasmic Hsp70 co-chaperone was identified to be required for growth on HU. Ydj1 bound the RNR subunit Rnr2 and cells lacking Ydj1 showed a destabilized RNR complex. Suggesting broad conservation from yeast to human, HDJ2 binds R2B and regulates RNR stability in human cells. Perturbation of the Ssa1-Ydj1 interaction through mutation or Hsp70-HDJ2 via the small molecule 116-9e compromised RNR function, suggesting chaperone dependence of this novel role. Mammalian cells lacking HDJ2 were significantly more sensitive to RNR inhibiting drugs such as hydroxyurea, gemcitabine and triapine. Taken together, this work suggests a novel anticancer strategy-inhibition of RNR by targeting Hsp70 co-chaperone function. Ribonucleotide reductase (RNR) is a key enzyme in the synthesis of DNA and inhibition of RNR leads to cellular sensitivity to radiation. As such, RNR is a well-validated therapeutic target for a variety of diseases including cancer. Anti-RNR drugs are effective but are associated with a range of side effects in patients. Our previous work had identified that the Hsp90 and Hsp70 molecular chaperone proteins regulate RNR. The specificity and activity of Hsp70 and Hsp90 are regulated by “co-chaperone” proteins. We examined RNR activity in cells lacking individual co-chaperones and identified the Ydj1/HDJ2 protein as a novel regulator of RNR in yeast and human cells. Importantly, we demonstrate that inhibiting HDJ2 sensitizes cells to currently used anticancer drugs.
Collapse
|