1
|
Krishnaswamy VG, Mani K, Senthil Kumar P, Rangasamy G, Sridharan R, Rethnaraj C, Amirtha Ganesh SS, Kalidas S, Palanisamy V, Chellama NJ, Chowdula S, Parthasarathy V, Rajendran S. Prevalence of differential microbiome in healthy, diseased and nipped colonies of corals, Porites lutea in the Gulf of Kachchh, north-west coast of India. ENVIRONMENTAL RESEARCH 2023; 216:114622. [PMID: 36279912 DOI: 10.1016/j.envres.2022.114622] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Coral reefs are constantly subjected to multiple stresses like diseases and fish predation, which can profoundly influence the coral microbiome. This study investigated the differences in bacterial community structure of healthy, white syndrome affected and blenny nipped coral colonies of Porites lutea, collected from the coral reefs of Gulf of Kachchh, north-west coast of India. Present study observed that the stressed coral colonies harbored more OTUs and contained higher diversity values compared to healthy corals colonies. Similarly, beta diversity analysis indicated the dissimilarities among the three coral samples analyzed. Though the taxonomy analysis indicated bacterial phyla like Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria among the entire coral samples studied, there was a variation in their relative abundances. Huge variations were observed in the relative dominance at the bacterial genera level. About 13phyla and 11 genera was identified in healthy coral. The PBN sample was found to contain Proteobacteria, Cyanobacteria, Verrucomicrobia, and Lentisphaerae as dominant phyla and Endozoicomonas, Dyella, Woeseia, and Winogradskyella as dominant genera. The PWS sample contained Proteobacteria, Lentisphaerae, Spirochaetes, and Tenericutes as dominant phyla and Endozoicomonas, Arcobacter, Sunxiuqinia, and Carboxylicivirgia as dominant genera. Among the healthy samples, sequences belonging to Uncultured Rhodospirillaceae were dominant, while Woeseia and sequences belonging to Uncultured Rhodovibrionaceae were dominant among the blenny nipped white syndrome infected corals. Although any previously established pathogen was not identified, present study revealed the presence of a potentially pathogenic bacterium, Arcobacter, among the diseased corals. It also demonstrated a dynamic microbiome among the Porites lutea colonies on subjecting to various stresses.
Collapse
Affiliation(s)
- Veena Gayathri Krishnaswamy
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, 600 086, Tamil Nadu, India.
| | - Kabilan Mani
- Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, 641 004, India.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Gayathri Rangasamy
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Rajalakshmi Sridharan
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, 600 086, Tamil Nadu, India
| | | | - Sai Sruthi Amirtha Ganesh
- Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, 641 004, India
| | - Suryasri Kalidas
- Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, 641 004, India
| | - Vignesh Palanisamy
- Department of Biotechnology, PSG College of Technology, Coimbatore, 641 004, India
| | - Nisha Jayasingh Chellama
- Marine Biology Regional Station - Zoological Survey of India, #130 Santhome High Road, Chennai, 600028, India
| | - Satyanarayana Chowdula
- Marine Biology Regional Station - Zoological Survey of India, #130 Santhome High Road, Chennai, 600028, India
| | - V Parthasarathy
- Department of Physics, Hindustan Institute of Technology and Science (Deemed to be University), Padur, 603103, Chennai, India
| | - Saravanan Rajendran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapaca, 1775, Arica, Chile
| |
Collapse
|
2
|
Liu M, Zhao Y, Sun Y, Wu P, Zhou S, Ren L. Diatom DNA barcodes for forensic discrimination of drowning incidents. FEMS Microbiol Lett 2021; 367:5896452. [PMID: 32832990 DOI: 10.1093/femsle/fnaa145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
The presence of diatoms in victim's internal organs has been regarded as a gold biological evidence of drowning. The idea becomes true at the advent of DNA metabarcoding. Unfortunately, the DNA barcode of diatoms are far from being applicable due to neither consensus on the barcode and nor reliable reference library.In this study we tested 23 pairs of primers, including two new primer pairs, Baci18S (V4 of 18S) and BacirbcL (central region of rbcL), for amplifying fragments of 16S/18S, 23S/28S, COI, ITS and rbcL. A total of five pairs of primers performed satisfactory for diatoms. We used three of them, 18S605 (V2 + V3 of 18S), Baci18S and BacirbcL, to barcode four water samples using next generation sequencing platform. The results showed that these primers worked well for NGS metabarcoding of diatoms. We suggest that 18S605, Baci18S and BacirbcL be barcodes of diatoms and the corresponding primer pairs be used. Considering a quite high proportion of sequences deposited in GenBank were mislabeled, the most urgent task for DNA barcoding of diatoms is to create standard sequences using correctly identified specimens, ideally type specimens.
Collapse
Affiliation(s)
- Mengyan Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13, HangkongRoad, Wuhan 430030, Hubei, P.R. China.,Forensic Judicial Appraisal Center of Beijing Public Security Bureau, No.1, Longgang Beijing Road, Beijing 100192, P.R. China
| | - Yi Zhao
- Forensic Judicial Appraisal Center of Beijing Public Security Bureau, No.1, Longgang Beijing Road, Beijing 100192, P.R. China
| | - Yuzhe Sun
- State Key Laboratory of Systematic & Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan street, Beijing 100093, P.R. China.,College of Life Sciences, University of Chinese Academy of Sciences, Yuquan road, Beijing 100049, P.R. China
| | - Ping Wu
- State Key Laboratory of Systematic & Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan street, Beijing 100093, P.R. China.,College of Life Sciences, University of Chinese Academy of Sciences, Yuquan road, Beijing 100049, P.R. China
| | - Shiliang Zhou
- State Key Laboratory of Systematic & Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan street, Beijing 100093, P.R. China.,College of Life Sciences, University of Chinese Academy of Sciences, Yuquan road, Beijing 100049, P.R. China
| | - Liang Ren
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13, HangkongRoad, Wuhan 430030, Hubei, P.R. China
| |
Collapse
|
3
|
Djemiel C, Plassard D, Terrat S, Crouzet O, Sauze J, Mondy S, Nowak V, Wingate L, Ogée J, Maron PA. µgreen-db: a reference database for the 23S rRNA gene of eukaryotic plastids and cyanobacteria. Sci Rep 2020; 10:5915. [PMID: 32246067 PMCID: PMC7125122 DOI: 10.1038/s41598-020-62555-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/09/2020] [Indexed: 11/29/2022] Open
Abstract
Studying the ecology of photosynthetic microeukaryotes and prokaryotic cyanobacterial communities requires molecular tools to complement morphological observations. These tools rely on specific genetic markers and require the development of specialised databases to achieve taxonomic assignment. We set up a reference database, called µgreen-db, for the 23S rRNA gene. The sequences were retrieved from generalist (NCBI, SILVA) or Comparative RNA Web (CRW) databases, in addition to a more original approach involving recursive BLAST searches to obtain the best possible sequence recovery. At present, µgreen-db includes 2,326 23S rRNA sequences belonging to both eukaryotes and prokaryotes encompassing 442 unique genera and 736 species of photosynthetic microeukaryotes, cyanobacteria and non-vascular land plants based on the NCBI and AlgaeBase taxonomy. When PR2/SILVA taxonomy is used instead, µgreen-db contains 2,217 sequences (399 unique genera and 696 unique species). Using µgreen-db, we were able to assign 96% of the sequences of the V domain of the 23S rRNA gene obtained by metabarcoding after amplification from soil DNA at the genus level, highlighting good coverage of the database. µgreen-db is accessible at http://microgreen-23sdatabase.ea.inra.fr.
Collapse
Affiliation(s)
- Christophe Djemiel
- Agroécologie, AgroSup Dijon, INRA, University Bourgogne Franche-Comté, Dijon, France
| | | | - Sébastien Terrat
- Agroécologie, AgroSup Dijon, INRA, University Bourgogne Franche-Comté, Dijon, France
| | - Olivier Crouzet
- Univ. Paris Saclay, AgroParisTech, UMR ECOSYS, INRA, F-78206, Versailles, France
| | - Joana Sauze
- INRA, Bordeaux Science Agro, UMR 1391 ISPA, 33140, Villenave d'Ornon, France
| | - Samuel Mondy
- Agroécologie, AgroSup Dijon, INRA, University Bourgogne Franche-Comté, Dijon, France
| | - Virginie Nowak
- Agroécologie, AgroSup Dijon, INRA, University Bourgogne Franche-Comté, Dijon, France
| | - Lisa Wingate
- INRA, Bordeaux Science Agro, UMR 1391 ISPA, 33140, Villenave d'Ornon, France
| | - Jérôme Ogée
- INRA, Bordeaux Science Agro, UMR 1391 ISPA, 33140, Villenave d'Ornon, France
| | - Pierre-Alain Maron
- Agroécologie, AgroSup Dijon, INRA, University Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
4
|
Ricci F, Rossetto Marcelino V, Blackall LL, Kühl M, Medina M, Verbruggen H. Beneath the surface: community assembly and functions of the coral skeleton microbiome. MICROBIOME 2019; 7:159. [PMID: 31831078 PMCID: PMC6909473 DOI: 10.1186/s40168-019-0762-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/17/2019] [Indexed: 05/24/2023]
Abstract
Coral microbial ecology is a burgeoning field, driven by the urgency of understanding coral health and slowing reef loss due to climate change. Coral resilience depends on its microbiota, and both the tissue and the underlying skeleton are home to a rich biodiversity of eukaryotic, bacterial and archaeal species that form an integral part of the coral holobiont. New techniques now enable detailed studies of the endolithic habitat, and our knowledge of the skeletal microbial community and its eco-physiology is increasing rapidly, with multiple lines of evidence for the importance of the skeletal microbiota in coral health and functioning. Here, we review the roles these organisms play in the holobiont, including nutritional exchanges with the coral host and decalcification of the host skeleton. Microbial metabolism causes steep physico-chemical gradients in the skeleton, creating micro-niches that, along with dispersal limitation and priority effects, define the fine-scale microbial community assembly. Coral bleaching causes drastic changes in the skeletal microbiome, which can mitigate bleaching effects and promote coral survival during stress periods, but may also have detrimental effects. Finally, we discuss the idea that the skeleton may function as a microbial reservoir that can promote recolonization of the tissue microbiome following dysbiosis and help the coral holobiont return to homeostasis.
Collapse
Affiliation(s)
- Francesco Ricci
- School of BioSciences, University of Melbourne, Parkville, 3010 Australia
| | - Vanessa Rossetto Marcelino
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW 2006 Australia
| | - Linda L. Blackall
- School of BioSciences, University of Melbourne, Parkville, 3010 Australia
| | - Michael Kühl
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, DK-3000 Helsingør, Denmark
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - Mónica Medina
- Pennsylvania State University, University Park, PA 16802 USA
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Parkville, 3010 Australia
| |
Collapse
|
5
|
Marcelino VR, Morrow KM, Oppen MJH, Bourne DG, Verbruggen H. Diversity and stability of coral endolithic microbial communities at a naturally high
p
CO
2
reef. Mol Ecol 2017; 26:5344-5357. [DOI: 10.1111/mec.14268] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 12/15/2022]
Affiliation(s)
| | - Kathleen M. Morrow
- Department of Molecular, Cellular and Biomedical Sciences University of New Hampshire Durham NH USA
- Australian Institute of Marine Science Townsville Qld Australia
| | - Madeleine J. H. Oppen
- School of Biosciences University of Melbourne Melbourne Vic. Australia
- Australian Institute of Marine Science Townsville Qld Australia
| | - David G. Bourne
- Australian Institute of Marine Science Townsville Qld Australia
- College of Science and Engineering James Cook University Townville Qld Australia
| | - Heroen Verbruggen
- School of Biosciences University of Melbourne Melbourne Vic. Australia
| |
Collapse
|