1
|
Yao Y, Wang X, Zhou D, Li H, Qian H, Zhang J, Jiang L, Wang B, Lin Q, Zhu X. Loss of AKR1B10 promotes colorectal cancer cells proliferation and migration via regulating FGF1-dependent pathway. Aging (Albany NY) 2020; 12:13059-13075. [PMID: 32615540 PMCID: PMC7377871 DOI: 10.18632/aging.103393] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/01/2020] [Indexed: 01/01/2023]
Abstract
Colorectal cancer (CRC) is a common malignancy worldwide with poor prognosis and survival rates. The aldo-keto reductase family 1 member B10 (AKR1B10) plays an important role in metabolism, cell proliferation and mobility, and is downregulated in CRC. We hypothesized that AKR1B10 would promote CRC genesis via a noncanonical oncogenic pathway and is a novel therapeutic target. In this study, AKR1B10 expression levels in 135 pairs of CRC and para-tumor tissues were examined, and its oncogenic role was determined using in vitro and in vivo functional assays following genetic manipulation of CRC cells. AKR1B10 was downregulated in CRC tissues compared to the adjacent normal colorectal tissues, and associated with the clinicopathological status of the patients. AKR1B10 depletion promoted the proliferation and migration of CRC cells in vitro, while its ectopic expression had the opposite effect. AKR1B10 was also significantly correlated with FGF1 gene and protein levels. Knockdown of AKR1B10 promoted tumor growth in vivo, and increased the expression of FGF1. Finally, AKR1B10 inhibited FGF1, and suppressed the proliferation and migration ability of CRC cells in an FGF1-dependent manner. In conclusion, AKR1B10 acts as a tumor suppressor in CRC by inactivating FGF1, and is a novel target for combination therapy of CRC.
Collapse
Affiliation(s)
- Yizhou Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xuchao Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Diyuan Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hao Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Huan Qian
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jiawen Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Linhua Jiang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bin Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qi Lin
- Suzhou Emergency Center, Suzhou, Jiangsu, China
| | - Xinguo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Mirzaei SA, Dinmohammadi F, Alizadeh A, Elahian F. Inflammatory pathway interactions and cancer multidrug resistance regulation. Life Sci 2019; 235:116825. [PMID: 31494169 DOI: 10.1016/j.lfs.2019.116825] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Multidrug resistances against chemotherapeutics are among the major challenges related to cancer treatment. Recent studies have demonstrated that different conditions may tune the expression and activity of MDR transporters. For instance, inflammation occurs through a complex cytological process and chemical reactions in the most tumor microenvironment; it can play a critical role in cancer development and is capable of altering the expression and function of MDR transporters. Cytokines, interleukins, and prostaglandins are potent inflammatory mediators that can modulate the expression of MDRs at transcriptional and post-transcriptional levels in the most human cancer cells and tissues and potentially contribute to balance bioavailability of chemotherapeutic agents. Since cancer cases are usually accompanied by inflammatory responses, glucocorticoids and NSAIDs are the primary useful combination chemotherapies in a variety of cancer treatment protocols. In addition to the anti-inflammatory activities of these agents, they exert diverse modulatory effects on MDR-mediated drug resistance via specific mechanisms. Several factors, including cell and MDR-protein types, pharmacokinetics, and pharmacogenetics, mainly influence the regulatory mechanisms. Uncovering the networks between inflammation and multidrug resistance will be clinically helpful in the treatment of malignant cancers and decreasing the cancer mortality rates.
Collapse
Affiliation(s)
- Seyed Abbas Mirzaei
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Farideh Dinmohammadi
- Department of Food and Drug Control, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Akram Alizadeh
- Department of Tissue Engineering, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
3
|
Cornel KMC, Bongers MY, Kruitwagen RPFM, Romano A. Local estrogen metabolism (intracrinology) in endometrial cancer: A systematic review. Mol Cell Endocrinol 2019; 489:45-65. [PMID: 30326245 DOI: 10.1016/j.mce.2018.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 09/13/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023]
Abstract
Endometrial cancer (EC) is the most common malignancy of the female gynaecological tract and increased exposure to estrogens is a risk factor. EC cells are able to produce estrogens locally using precursors like, among others, adrenal steroids present in the serum. This is referred to as local estrogen metabolism (or intracrinology) and consists of a complex network of multiple enzymes. Particular relevant to the final generation of active estrogens in endometrial cells are: steroid sulfatase (STS), estrogen sulfotransferase (SULT1E1), aromatase (CYP19A1), 17β-hydroxysteroid dehydrogenase (HSD17B) type 1 and type 2. During the last decades, a plethora of studies explored the level of these enzymes in EC but contrasting data were reported, which generated vigorous debate and controversies. Several reviews attempted at clarifying some of the debated issues, but published reviews are based on investigator-defined bibliography selection and not on systematic analysis. Therefore, we performed a systematic review of the literature reporting about the level of STS, SULT1E1, CYP19A1, HSD17B1 and HSD17B2 in EC. Additional intracrine enzymes and networks (e.g., HSD17Bs other than types 1 and 2, aldo-keto reductases, progesterone and androgen metabolism) were non-systematically reviewed as well.
Collapse
Affiliation(s)
- K M C Cornel
- Department of Obstetrics and Gynaecology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, the Netherlands
| | - M Y Bongers
- Department of Obstetrics and Gynaecology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, the Netherlands; Department of Obstetrics and Gynaecology, Máxima Medical Centre, Veldhoven, the Netherlands
| | - R P F M Kruitwagen
- Department of Obstetrics and Gynaecology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, the Netherlands
| | - A Romano
- Department of Obstetrics and Gynaecology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, the Netherlands.
| |
Collapse
|
4
|
|
5
|
Sinreih M, Knific T, Thomas P, Frković Grazio S, Rižner TL. Membrane progesterone receptors β and γ have potential as prognostic biomarkers of endometrial cancer. J Steroid Biochem Mol Biol 2018; 178:303-311. [PMID: 29353001 DOI: 10.1016/j.jsbmb.2018.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 12/17/2022]
Abstract
Endometrial cancer (EC) is one of the most common malignancies in women worldwide. EC is linked to chronic exposure to estrogens that is unopposed by protective effects of progesterone. Progesterone modulates gene expression via classical nuclear receptors, and has rapid effects via the less characterized membrane-bound progesterone receptors (mPRs) of the progestin and adipoQ receptor (PAQR) family. The presence of mPRs in EC has not been investigated to date. The aims of this study were to examine PAQR7, PAQR8 and PAQR5, which encode for mPRα, mPRβ and mPRγ, respectively, for their expression and localization in EC tissue and adjacent control endometrium. Our results reveal decreased expression of PAQR7 and PAQR8, and unaltered expression of PAQR5 in EC versus control tissue. Expression of PAQR5 was decreased in EC with higher FIGO stage versus stage IA. Immunohistochemistry revealed lower levels of mPRα and mPRβ, but higher levels of mPRγ, in EC versus control tissue. There was greater decrease in mPRβ levels in tumors with lymphovascular invasion. The analysis of the expression data associates higher PAQR5 mRNA and mPRβ protein levels with favorable patient prognosis. Immunohistochemistry showed diverse localizations of mPRs in control and cancer endometrium. In control endometrium, mPRα and mPRβ were localized mostly at the cell membranes, while mPRγ was localized in the cytoplasm and/or nucleus. In cancer endometrium, mPRα and mPRβ were detected at the cell membrane or in the cytoplasm, or both, while mPRγ was only localized in the cytoplasm. Taken together, these results imply that mPRs are involved in EC pathogenesis through effects on the development or progression of cancer. The potential role of mPRβ and mPRγ as prognostic biomarkers needs to be further assessed on a larger number of samples.
Collapse
MESH Headings
- Adenocarcinoma, Mucinous/genetics
- Adenocarcinoma, Mucinous/metabolism
- Adenocarcinoma, Mucinous/pathology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Membrane/metabolism
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/metabolism
- Cystadenocarcinoma, Serous/pathology
- Endometrial Neoplasms/genetics
- Endometrial Neoplasms/metabolism
- Endometrial Neoplasms/pathology
- Female
- Humans
- Middle Aged
- Neoplasm Invasiveness
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
Collapse
Affiliation(s)
- Maša Sinreih
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Tamara Knific
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Peter Thomas
- Marine Science Institute, University of Texas at Austin, Austin, USA
| | - Snježana Frković Grazio
- Division of Obstetrics and Gynaecology, Department of Pathology, University Medical Centre, Ljubljana, Slovenia
| | - Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia.
| |
Collapse
|