1
|
Patiño LF, Aguirre-Hoyos V, Pinilla LI, Toro LF, Ríos-Estepa R. Environmental Factors Modulate the Role of orf21 Sigma Factor in Clavulanic Acid Production in Streptomyces Clavuligerus ATCC27064. Bioengineering (Basel) 2022; 9:bioengineering9020078. [PMID: 35200432 PMCID: PMC8869649 DOI: 10.3390/bioengineering9020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/29/2022] Open
Abstract
Sigma factors and sigma factor-related mechanisms control antibiotic production in Streptomyces. In this contribution, the orf21 gene was overexpressed in the wild-type strain of Streptomyces clavuligerus ATCC2764, yielding S. clavuligerus/pIORF21, to further evaluate its regulatory effect on clavulanic acid (CA) biosynthesis under different culture medium conditions. The orf21 overexpression, regulated under the constitutive promoter ermE*, led to 2.6-fold increase in CA production in GSPG medium, and a 1.8-fold decrease using ISP medium. As for GYM and MYM media, S. clavuligerus/pIORF21 strain showed higher aerial mycelium production compared to control. Glycerol uptake rate profile was affected by orf21 overexpression. Furthermore, in GSPG, S. clavuligerus/pIORF21 slightly increased the expression of adpA and gcas genes, whilst, in ISP, the claR gene expression was drastically reduced, which is consistent with a decreased CA production, observed in this medium. These findings suggest the protein encoded by the orf21 gene plays a role in the regulation of CA biosynthesis as a response to the nutritional composition of the medium.
Collapse
|
2
|
Ramirez-Malule H, López-Agudelo VA, Gómez-Ríos D, Ochoa S, Ríos-Estepa R, Junne S, Neubauer P. TCA Cycle and Its Relationship with Clavulanic Acid Production: A Further Interpretation by Using a Reduced Genome-Scale Metabolic Model of Streptomyces clavuligerus. Bioengineering (Basel) 2021; 8:103. [PMID: 34436106 PMCID: PMC8389198 DOI: 10.3390/bioengineering8080103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/04/2021] [Accepted: 07/16/2021] [Indexed: 11/26/2022] Open
Abstract
Streptomyces clavuligerus (S. clavuligerus) has been widely studied for its ability to produce clavulanic acid (CA), a potent inhibitor of β-lactamase enzymes. In this study, S. clavuligerus cultivated in 2D rocking bioreactor in fed-batch operation produced CA at comparable rates to those observed in stirred tank bioreactors. A reduced model of S. clavuligerus metabolism was constructed by using a bottom-up approach and validated using experimental data. The reduced model was implemented for in silico studies of the metabolic scenarios arisen during the cultivations. Constraint-based analysis confirmed the interrelations between succinate, oxaloacetate, malate, pyruvate, and acetate accumulations at high CA synthesis rates in submerged cultures of S. clavuligerus. Further analysis using shadow prices provided a first view of the metabolites positive and negatively associated with the scenarios of low and high CA production.
Collapse
Affiliation(s)
| | | | - David Gómez-Ríos
- Grupo de Investigación en Simulación, Diseño, Control y Optimización de Procesos (SIDCOP), Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Medellín 050010, Colombia; (D.G.-R.); (S.O.)
| | - Silvia Ochoa
- Grupo de Investigación en Simulación, Diseño, Control y Optimización de Procesos (SIDCOP), Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Medellín 050010, Colombia; (D.G.-R.); (S.O.)
| | - Rigoberto Ríos-Estepa
- Escuela de Biociencias, Universidad Nacional de Colombia sede Medellín, Medellín 050010, Colombia;
| | - Stefan Junne
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, D-13355 Berlin, Germany; (S.J.); (P.N.)
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, D-13355 Berlin, Germany; (S.J.); (P.N.)
| |
Collapse
|
3
|
López-Agudelo VA, Gómez-Ríos D, Ramirez-Malule H. Clavulanic Acid Production by Streptomyces clavuligerus: Insights from Systems Biology, Strain Engineering, and Downstream Processing. Antibiotics (Basel) 2021; 10:84. [PMID: 33477401 PMCID: PMC7830376 DOI: 10.3390/antibiotics10010084] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/16/2022] Open
Abstract
Clavulanic acid (CA) is an irreversible β-lactamase enzyme inhibitor with a weak antibacterial activity produced by Streptomyces clavuligerus (S. clavuligerus). CA is typically co-formulated with broad-spectrum β‑lactam antibiotics such as amoxicillin, conferring them high potential to treat diseases caused by bacteria that possess β‑lactam resistance. The clinical importance of CA and the complexity of the production process motivate improvements from an interdisciplinary standpoint by integrating metabolic engineering strategies and knowledge on metabolic and regulatory events through systems biology and multi-omics approaches. In the large-scale bioprocessing, optimization of culture conditions, bioreactor design, agitation regime, as well as advances in CA separation and purification are required to improve the cost structure associated to CA production. This review presents the recent insights in CA production by S. clavuligerus, emphasizing on systems biology approaches, strain engineering, and downstream processing.
Collapse
Affiliation(s)
| | - David Gómez-Ríos
- Grupo de Investigación en Simulación, Diseño, Control y Optimización de Procesos (SIDCOP), Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia;
| | | |
Collapse
|
4
|
Gómez-Ríos D, López-Agudelo VA, Ramírez-Malule H, Neubauer P, Junne S, Ochoa S, Ríos-Estepa R. A Genome-Scale Insight into the Effect of Shear Stress During the Fed-Batch Production of Clavulanic Acid by Streptomyces Clavuligerus. Microorganisms 2020; 8:E1255. [PMID: 32824882 PMCID: PMC7569809 DOI: 10.3390/microorganisms8091255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
Streptomyces clavuligerus is a filamentous Gram-positive bacterial producer of the β-lactamase inhibitor clavulanic acid. Antibiotics biosynthesis in the Streptomyces genus is usually triggered by nutritional and environmental perturbations. In this work, a new genome scale metabolic network of Streptomyces clavuligerus was reconstructed and used to study the experimentally observed effect of oxygen and phosphate concentrations on clavulanic acid biosynthesis under high and low shear stress. A flux balance analysis based on experimental evidence revealed that clavulanic acid biosynthetic reaction fluxes are favored in conditions of phosphate limitation, and this is correlated with enhanced activity of central and amino acid metabolism, as well as with enhanced oxygen uptake. In silico and experimental results show a possible slowing down of tricarboxylic acid (TCA) due to reduced oxygen availability in low shear stress conditions. In contrast, high shear stress conditions are connected with high intracellular oxygen availability favoring TCA activity, precursors availability and clavulanic acid (CA) production.
Collapse
Affiliation(s)
- David Gómez-Ríos
- Grupo de Investigación en Simulación, Diseño, Control y Optimización de Procesos (SIDCOP), Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia;
- Grupo de Bioprocesos, Departamento de Ingeniería Química, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín 050010, Colombia;
| | - Victor A. López-Agudelo
- Grupo de Bioprocesos, Departamento de Ingeniería Química, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín 050010, Colombia;
| | - Howard Ramírez-Malule
- Escuela de Ingeniería Química, Universidad del Valle, A.A. 25360, Cali 76001, Colombia;
| | - Peter Neubauer
- Technische Universität Berlin, Institute of Biotechnology, Chair of Bioprocess Engineering, Ackerstr. 76, ACK 24, D-13355 Berlin, Germany; (P.N.); (S.J.)
| | - Stefan Junne
- Technische Universität Berlin, Institute of Biotechnology, Chair of Bioprocess Engineering, Ackerstr. 76, ACK 24, D-13355 Berlin, Germany; (P.N.); (S.J.)
| | - Silvia Ochoa
- Grupo de Investigación en Simulación, Diseño, Control y Optimización de Procesos (SIDCOP), Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia;
| | - Rigoberto Ríos-Estepa
- Grupo de Bioprocesos, Departamento de Ingeniería Química, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín 050010, Colombia;
- Escuela de Biociencias, Universidad Nacional de Colombia sede Medellín, Calle 59 A 63-20, Medellín 050010, Colombia
| |
Collapse
|