1
|
Gutiérrez-Ruíz SC, Cortes H, González-Torres M, Almarhoon ZM, Gürer ES, Sharifi-Rad J, Leyva-Gómez G. Optimize the parameters for the synthesis by the ionic gelation technique, purification, and freeze-drying of chitosan-sodium tripolyphosphate nanoparticles for biomedical purposes. J Biol Eng 2024; 18:12. [PMID: 38273413 PMCID: PMC10811841 DOI: 10.1186/s13036-024-00403-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Polymeric nanoparticles can be used for wound closure and therapeutic compound delivery, among other biomedical applications. Although there are several nanoparticle obtention methods, it is crucial to know the adequate parameters to achieve better results. Therefore, the objective of this study was to optimize the parameters for the synthesis, purification, and freeze-drying of chitosan nanoparticles. We evaluated the conditions of agitation speed, anion addition time, solution pH, and chitosan and sodium tripolyphosphate concentration. RESULTS Chitosan nanoparticles presented an average particle size of 172.8 ± 3.937 nm, PDI of 0.166 ± 0.008, and zeta potential of 25.00 ± 0.79 mV, at the concentration of 0.1% sodium tripolyphosphate and chitosan (pH 5.5), with a dripping time of 2 min at 500 rpm. The most representative factor during nanoparticle fabrication was the pH of the chitosan solution, generating significant changes in particle size and polydispersity index. The observed behavior is attributed to the possible excess of sodium tripolyphosphate during synthesis. We added the surfactants poloxamer 188 and polysorbate 80 to evaluate the stability improvement during purification (centrifugation or dialysis). These surfactants decreased coalescence between nanoparticles, especially during purification. The centrifugation increased the zeta potential to 40.8-56.2 mV values, while the dialyzed samples led to smaller particle sizes (152-184 nm). Finally, freeze-drying of the chitosan nanoparticles proceeded using two cryoprotectants, trehalose and sucrose. Both adequately protected the system during the process, and the sugar concentration depended on the purification process. CONCLUSIONS In Conclusion, we must consider each surfactant's benefits in formulations for selecting the most suitable. Also, it is necessary to do more studies with the molecule to load. At the same time, the use of sucrose and trehalose generates adequate protection against the freeze-drying process, even at a 5% w/v concentration. However, adjusting the percentage concentration by weight must be made to work with the CS-TPP NPs purified by dialysis.
Collapse
Affiliation(s)
| | - Hernán Cortes
- Departamento de Genómica, Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Maykel González-Torres
- CONACyT-Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, 14389, Mexico
| | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Eda Sönmez Gürer
- Department of Pharmacognosy, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
2
|
Viturat S, Thongngam M, Lumdubwong N, Zhou W, Klinkesorn U. Ultrasound-assisted formation of chitosan-glucose Maillard reaction products to fabricate nanoparticles with enhanced antioxidant activity. ULTRASONICS SONOCHEMISTRY 2023; 97:106466. [PMID: 37290152 DOI: 10.1016/j.ultsonch.2023.106466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
The influence of ultrasonic processing parameters including reaction temperature (60, 70 and 80 °C), time (0, 15, 30, 45 and 60 min) and amplitude (70, 85 and 100%) on the formation and antioxidant activity of Maillard reaction products (MRPs) in a solution of chitosan and glucose (1.5 wt% at mass ratio of 1:1) was investigated. Selected chitosan-glucose MRPs were further studied to determine the effects of solution pH on the fabrication of antioxidative nanoparticles by ionic crosslinking with sodium tripolyphosphate. Results from FT-IR analysis, zeta-potential determination and color measurement indicated that chitosan-glucose MRPs with improved antioxidant activity were successfully produced using an ultrasound-assisted process. The highest antioxidant activity of MRPs was observed at the reaction temperature, time and amplitude of 80 °C, 60 min and 70%, respectively, with ∼ 34.5 and ∼20.2 μg Trolox mL-1 for DPPH scavenging activity and reducing power, respectively. The pH of both MRPs and tripolyphosphate solutions significantly influenced the fabrication and characteristics of the nanoparticles. Using chitosan-glucose MRPs and tripolyphosphate solution at pH 4.0 generated nanoparticles with enhanced antioxidant activity (∼1.6 and ∼ 1.2 μg Trolox mg-1 for reducing power and DPPH scavenging activity, respectively) with the highest percentage yield (∼59%), intermediate particle size (∼447 nm) and zeta-potential ∼ 19.6 mV. These results present innovative findings for the fabrication of chitosan-based nanoparticles with enhanced antioxidant activity by pre-conjugation with glucose via the Maillard reaction aided by ultrasonic processing.
Collapse
Affiliation(s)
- Supapit Viturat
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand
| | - Masubon Thongngam
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand
| | - Namfone Lumdubwong
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand
| | - Weibiao Zhou
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, 117542, Singapore.
| | - Utai Klinkesorn
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand; Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand; Research Unit on Innovative Technologies for Production and Delivery of Functional Biomolecules, Kasetsart University Research and Development Institute, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand.
| |
Collapse
|
3
|
Kaushalya KGD, Gunathilake KDPP. Encapsulation of phlorotannins from edible brown seaweed in chitosan: Effect of fortification on bioactivity and stability in functional foods. Food Chem 2022; 377:132012. [PMID: 34998154 DOI: 10.1016/j.foodchem.2021.132012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 11/15/2022]
Abstract
Phlorotannins are a family of proven therapeutic agents. However, low stability disturbs their full bioactivity expression in the human body. Hence, this study focused on preserving their vitality through encapsulation. Phlorotannins isolated from Sargassum ilicifolium were encapsulated in the chitosan-tripolyphosphate carrier. Their storage stability, processing stability, and bioactivity retention upon in vitro digestion were determined. Results revealed the highest total phlorotannin content (TPC) of 854.38 ± 48 mg Phloroglucinol Equivalence/g in the semi-purified ethyl acetate fraction while the NMR spectrum and the LCMS profile revealed the isolation of phlorotannins in it. Storage at -18℃ and 4℃ temperatures preserved thrice both the encapsulated and non-encapsulated phlorotannins than ambient conditions. Encapsulated compound reported 56.4% of TPC retention at 175 ℃ processing temperature. Fermented fraction of encapsulated form showed significantly higher (p < 0.05) antioxidant activities and TPC (0.23 ± 0.03 mg/mL) suggesting the potential for targeted delivery of phlorotannins to their absorption sites through encapsulation.
Collapse
Affiliation(s)
- K G D Kaushalya
- Department of Food Science and Technology, Faculty of Livestock, Fisheries & Nutrition, Wayamba University of Sri Lanka, Makandura, Gonawila, Sri Lanka
| | - K D P P Gunathilake
- Department of Food Science and Technology, Faculty of Livestock, Fisheries & Nutrition, Wayamba University of Sri Lanka, Makandura, Gonawila, Sri Lanka.
| |
Collapse
|
4
|
Ebrahimnejad P, Nikookar SH, Fazeli-Dinan M, Payman Ziapour S, Farmoudeh A, Babaei A, Enayati A. Preparation, characterisation and comparative toxicity of nanopermethrin against Anopheles stephensi and Culex pipiens. Trop Med Int Health 2021; 26:982-992. [PMID: 33837621 DOI: 10.1111/tmi.13587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVES To assess the effectiveness of nanopermethrin as a potential new formulation for pest and vector control. METHODS Permethrin nanoparticles were prepared by the ionic gelation method and its structure and the formulations were designed using Box-Behnken statistical technique. The effect of independent variables (Chitosan/Permethrin ratio, tripolyphosphate quantity, sonication time) on the properties of nanoparticles was investigated to determine the optimal formulation. RESULTS The size of the nanoparticles ranged from 135.27 ± 5.88 to 539.5 ± 24.01 nm and the insecticide entrapment efficiency per cent (EE%) ranged from 7.72 ± 1.36 to 63.59 ± 3.17%. Anopheles stephensi larvae were then bioassayed with the nanopermethrin and compared with the results of the bioassay with the mother molecule of permethrin using a standard WHO-recommended mosquito larval bioassay kit. LC50 with permethrin and nanopermethrin on larvae of An. stephensi were 0.125 and 0.026 ppm showing a 4.8 times difference. The LC50 for permethrin and nanopermethrin on Culex pipiens were 0.003 and 0.00032 ppm, respectively, showing a 9.4-fold difference. CONCLUSION Nanopermethrin is much more potent than its mother molecule against larvae of An. stephensi and Cx. pipiens.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Department of Pharmaceutics, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Pharmaceutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Hassan Nikookar
- Department of Medical Entomology and Vector Control, Health Sciences Research Center, Addiction Institute and School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahmoud Fazeli-Dinan
- Department of Medical Entomology and Vector Control, Health Sciences Research Center, Addiction Institute and School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Payman Ziapour
- Department of Parasitology, Zoonosis Research Center, Pasteur Institute of Iran, Amol, Iran
| | - Ali Farmoudeh
- Department of Pharmaceutics, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Pharmaceutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Pharmaceutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmadali Enayati
- School of Public Health and Health Sciences Research Center, Medical Entomology Department, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
5
|
Antiproliferative effects of boswellic acid-loaded chitosan nanoparticles on human lung cancer cell line A549. Future Med Chem 2020; 12:2019-2034. [PMID: 33124483 DOI: 10.4155/fmc-2020-0083] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: In the present study boswellic acids-loaded chitosan nanoparticles were synthesized using ionic gelation technique. The influence of independent variables were studied and optimized on dependent variables using central composite design. Methodology & results: The designed nanoparticles were observed spherical in shape with an average size of 67.5-187.2 nm and have also shown an excellent entrapment efficiency (80.06 ± 0.48). The cytotoxicity assay revealed enhanced cytotoxicity for drug-loaded nanoparticles in contrast to the free drug having an IC50 value of 17.29 and 29.59 μM, respectively. Flow cytometry confirmed that treatment of cells with 40 μg/ml had arrested 22.75 ± 0.3% at SubG0 phase of the cell cycle when compared with untreated A459 cells. The observed results justified the boswellic acids-loaded chitosan nanoparticles were effective due to greater cellular uptake, sustained intercellular drug retention and enhanced antiproliferative effect by inducing apoptosis.
Collapse
|
6
|
Acay H, Yildirim A, Erdem Güzel E, Kaya N, Baran MF. Evaluation and characterization of Pleurotus eryngii extract-loaded chitosan nanoparticles as antimicrobial agents against some human pathogens. Prep Biochem Biotechnol 2020; 50:897-906. [PMID: 32420792 DOI: 10.1080/10826068.2020.1765376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
With the increase of antibiotic resistance, which is present at a worrying rate, research on the use of newly developed nanoparticles as an antimicrobial agent with green biotechnology has intensified. The study aimed to investigate the antimicrobial effects of chitosan nanoparticles (CSNP) synthesized using Pleurotus eryngii extract (PE). Characterization of P. eryngii-loaded chitosan nanoparticles (PE-CSNPs) was performed with Fourier transform infrared spectrophotometer, X-ray diffraction, Field-emission scanning electron microscopy, Brunauer-Emmett-Teller, Differential scanning calorimetry, and zeta potential techniques. The FE-SEM images showed that the surface morphology of nanoparticles is similar to CS, but has more porosity network and smaller dimensions structure. The average particle size of spherical PE-CSNPs was obtained as 330.1 nm. The specific surface area and average pore diameter of the synthesized nanoparticles were found as 3.99 m2g-1 and 2.25 nm, respectively. X-ray diffraction determines the presence of an amorphous peak at 2θ = 21.2° results from CS and PE. PE-CSNPs synthesized using P. eryngii extract showed strong antimicrobial activity against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Candida albicans as 0.0156, 0.0625, 0.0625 and 0.0312 mg ml-1, respectively. Thus, it was determined that chitosan nanoparticles formed by the green synthesis of P. eryngii extract showed strong anti-microbial properties.
Collapse
Affiliation(s)
- Hilal Acay
- Faculty of Health Science, Department of Nutrition and Dietetics, Mardin Artuklu University, Mardin, Turkey
| | - Ayfer Yildirim
- Vocational Higher School of Healthcare Studies, Mardin Artuklu University, Mardin, Turkey
| | - Elif Erdem Güzel
- Faculty of Health Science, Department of Midwifery, Mardin Artuklu University, Mardin, Turkey
| | - Nalan Kaya
- Faculty of Medicine, Department of Histology and Embryology, Fırat University, Elazığ, Turkey
| | - Mehmet Firat Baran
- Vocational Higher School of Healthcare Studies, Mardin Artuklu University, Mardin, Turkey
| |
Collapse
|