1
|
Antmen FM, Matpan E, Dayanc ED, Savas EO, Eken Y, Acar D, Ak A, Ozefe B, Sakar D, Canozer U, Sancak SN, Ozdemir O, Sezerman OU, Baykal AT, Serteser M, Suyen G. The Metabolic Profile of Plasma During Epileptogenesis in a Rat Model of Lithium-Pilocarpine-Induced Temporal Lobe Epilepsy. Mol Neurobiol 2025; 62:7469-7483. [PMID: 39904962 PMCID: PMC12078362 DOI: 10.1007/s12035-025-04719-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Temporal lobe epilepsy (TLE) arises mostly because of an initial injury. Certain stimuli can make a normal brain prone to repeated, spontaneous seizures via a process called epileptogenesis. This study examined the plasma metabolomics profile in rats with the induced TLE to identify feasible biomarkers that can distinguish progression of epileptogenesis in three different time points and reveal the underlying mechanisms of epileptogenesis. Status epilepticus (SE) was induced by repetitive intraperitoneal injections of low-dose lithium chloride-pilocarpine hydrocholoride. Blood samples were collected 48 h, 1 week, and 6 weeks after SE, respectively. Plasma metabolites were analyzed by nuclear magnetic resonance (NMR) spectrometry. Statistical analysis was performed using MetaboAnalyst 6.0. An orthogonal partial least squares discriminant analysis (OPLS-DA) model was employed to represent variations between the TLE model groups and respective controls. Volcano plot analysis was used to identify key features, applying a fold-change criterion of 1.5 and a t-test threshold of 0.05. 48 h after SE, dimethyl sulfone (DMSO2) and creatinine levels were decreased, whereas glycine and creatine levels were increased. The only metabolite that changed 1 week after SE was pyruvic acid, which was increased compared to its control level. Lactic acid, pyruvic acid, and succinic acid levels were increased 6 weeks after SE. The identified metabolites were especially related to the tricarboxylic acid cycle and glycine, serine, and threonine metabolism. The results illustrate that distinct plasma metabolites can function as phase-specific biomarkers in TLE and reveal new insights into the mechanisms underlying SE.
Collapse
Affiliation(s)
- Fatma Merve Antmen
- Department of Physiology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
- Acibadem Mehmet Ali Aydinlar University, Biobank Unit, Istanbul, Türkiye
| | - Emir Matpan
- School of Medicine, Department of Medical Biochemistry, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Ekin Dongel Dayanc
- Department of Physiology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
- Medical Laboratory Techniques, Vocational School of Health Services, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Eylem Ozge Savas
- Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Yunus Eken
- Department of Molecular Biology and Genetics, Inonu University, Malatya, Türkiye
| | - Dilan Acar
- Department of Physiology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Alara Ak
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Begum Ozefe
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Damla Sakar
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Ufuk Canozer
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | | | - Ozkan Ozdemir
- School of Medicine, Department of Basic Medical Sciences, Medical Biology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Osman Ugur Sezerman
- School of Medicine, Department of Basic Medical Sciences, Biostatistics and Medical Informatics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Ahmet Tarık Baykal
- School of Medicine, Department of Medical Biochemistry, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
- Acibadem Labmed Clinical Laboratories, Istanbul, Türkiye
| | - Mustafa Serteser
- School of Medicine, Department of Medical Biochemistry, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
- Acibadem Labmed Clinical Laboratories, Istanbul, Türkiye
| | - Guldal Suyen
- School of Medicine, Department of Physiology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye.
| |
Collapse
|
2
|
da Silva Costa N, de Araujo JR, da Silva Melo MF, da Costa Mota J, Almeida PP, Coutinho-Wolino KS, Da Cruz BO, Brito ML, de Souza Carvalho T, Barreto-Reis E, de Luca BG, Mafra D, Magliano D'AC, de Souza Abboud R, Rocha RS, da Cruz AG, de Toledo Guimarães J, Stockler-Pinto MB. Effects of Probiotic-Enriched Minas Cheese (Lactobacillus acidophilus La-05) on Cardiovascular Parameters in 5/6 Nephrectomized Rats. Probiotics Antimicrob Proteins 2025; 17:873-887. [PMID: 37917394 DOI: 10.1007/s12602-023-10173-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Dairy foods have become an interest in chronic kidney disease (CKD) due to their nutritional profile, which makes them a good substrate for probiotics incorporation. This study evaluated the effect of probiotic-enriched Minas cheese with Lactobacillus acidophilus La-05 in an experimental rat model for CKD on cardiac, inflammatory, and oxidative stress parameters. Male Wistar rats were divided into 4 groups (n = 7/group): 5/6 nephrectomy + conventional Minas cheese (NxC); 5/6 nephrectomy + probiotic Minas cheese (NxPC); Sham + conventional Minas cheese (ShamC); Sham + probiotic Minas cheese (ShamPC). Offering 20 g/day of Minas cheese with Lact. acidophilus La-05 (108-109 log CFU/g) for 6 weeks. The cardiomyocyte diameter was determined. Superoxide dismutase (SOD) activity in plasma, heart, kidney, and colon tissue was performed. At the end of supplementation, no significant changes in lipid profile and renal parameters were found. The NxPC group showed a decrease in cardiomyocyte diameter compared to the NxC group (16.99 ± 0.85 vs. 19.05 ± 0.56 μm, p = 0.0162); also they showed reduced plasmatic SOD activity (502.8 ± 49.12 vs. 599.4 ± 94.69 U/mL, p < 0.0001). In summary, probiotic-enriched Minas cheese (Lact. acidophilus La-05) consumption suggests a promisor cardioprotective effect and was able to downregulate SOD activity in a rat model of CKD.
Collapse
Affiliation(s)
- Nathalia da Silva Costa
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
| | - Joana Ramos de Araujo
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
| | | | | | | | | | - Beatriz Oliveira Da Cruz
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Michele Lima Brito
- Graduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Thaís de Souza Carvalho
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Emanuelle Barreto-Reis
- Graduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Beatriz Gouvêa de Luca
- Graduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Denise Mafra
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - D 'Angelo Carlo Magliano
- Graduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Renato de Souza Abboud
- Morphology Department, Laboratory of Cellular and Extracellular Biomorphology Biomedic Institute, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Ramon Silva Rocha
- Veterinary Hygiene and Technical Processing of Animal Products Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Adriano Gomes da Cruz
- Veterinary Hygiene and Technical Processing of Animal Products Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Food Department, Federal Institute of Education, Science and Technology of Rio de Janeiro (IFRJ), Rio de Janeiro, RJ, Brazil
| | - Jonas de Toledo Guimarães
- Food Technology Department, Veterinary College, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Milena Barcza Stockler-Pinto
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Nutrition Faculty, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Graduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| |
Collapse
|
3
|
Antmen FM, Matpan E, Dongel Dayanc E, Savas EO, Eken Y, Acar D, Ak A, Ozefe B, Sakar D, Canozer U, Sancak SN, Ozdemir O, Sezerman OU, Baykal AT, Serteser M, Suyen G. Urinary Metabolic Profiling During Epileptogenesis in Rat Model of Lithium-Pilocarpine-Induced Temporal Lobe Epilepsy. Biomedicines 2025; 13:588. [PMID: 40149565 PMCID: PMC11940187 DOI: 10.3390/biomedicines13030588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/17/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Temporal lobe epilepsy (TLE) often develops following an initial brain injury, where specific triggers lead to epileptogenesis-a process transforming a healthy brain into one prone to spontaneous, recurrent seizures. Although electroencephalography (EEG) remains the primary diagnostic tool for epilepsy, it cannot predict the risk of epilepsy after brain injury. This limitation highlights the need for biomarkers, particularly those measurable in peripheral samples, to assess epilepsy risk. This study investigated urinary metabolites in a rat model of TLE to identify biomarkers that track epileptogenesis progression across the acute, latent, and chronic phases and elucidate the underlying mechanisms. Methods: Status epilepticus (SE) was induced in rats using repeated intraperitoneal injections of lithium chloride-pilocarpine hydrochloride. Urine samples were collected 48 h, 1 week, and 6 weeks after SE induction. Nuclear magnetic resonance spectrometry was used for metabolomic analysis, and statistical evaluations were performed using MetaboAnalyst 6.0. Differences between epileptic and control groups were represented using the orthogonal partial least squares discriminant analysis (OPLS-DA) model. Volcano plot analysis identified key metabolic changes, applying a fold-change threshold of 1.5 and a p-value < 0.05. Results: The acute phase exhibited elevated levels of acetic acid, dihydrothymine, thymol, and trimethylamine, whereas glycolysis and tricarboxylic acid cycle metabolites, including pyruvic and citric acids, were reduced. Both the acute and latent phases showed decreased theobromine, taurine, and allantoin levels, with elevated 1-methylhistidine in the latent phase. The chronic phase exhibited reductions in pimelic acid, tiglylglycine, D-lactose, and xanthurenic acid levels. Conclusions: These findings highlight stage-specific urinary metabolic changes in TLE, suggesting distinct metabolites as biomarkers for epileptogenesis and offering insights into the mechanisms underlying SE progression.
Collapse
Affiliation(s)
- Fatma Merve Antmen
- Department of Physiology, Graduate School of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye; (F.M.A.)
- Biobank Unit, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Emir Matpan
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Ekin Dongel Dayanc
- Department of Physiology, Graduate School of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye; (F.M.A.)
- Medical Laboratory Techniques, Vocational School of Health Services, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Eylem Ozge Savas
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Yunus Eken
- Department of Molecular Biology and Genetics, Inonu University, Malatya 44280, Türkiye
| | - Dilan Acar
- Department of Physiology, Graduate School of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye; (F.M.A.)
| | - Alara Ak
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Begum Ozefe
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Damla Sakar
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Ufuk Canozer
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Sehla Nurefsan Sancak
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Ozkan Ozdemir
- Medical Biology, Department of Basic Medical Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Osman Ugur Sezerman
- Biostatistics and Medical Informatics, Department of Basic Medical Sciences, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Ahmet Tarık Baykal
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
- Acibadem Labmed Clinical Laboratories, Istanbul 34752, Türkiye
| | - Mustafa Serteser
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
- Acibadem Labmed Clinical Laboratories, Istanbul 34752, Türkiye
| | - Guldal Suyen
- Department of Physiology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| |
Collapse
|
4
|
Petrella G, Montesano C, Lentini S, Ciufolini G, Vanni D, Speziale R, Salonia A, Montorsi F, Summa V, Vago R, Orsatti L, Monteagudo E, Cicero DO. Personalized Metabolic Profile by Synergic Use of NMR and HRMS. Molecules 2021; 26:4167. [PMID: 34299442 PMCID: PMC8304707 DOI: 10.3390/molecules26144167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 12/25/2022] Open
Abstract
A new strategy that takes advantage of the synergism between NMR and UHPLC-HRMS yields accurate concentrations of a high number of compounds in biofluids to delineate a personalized metabolic profile (SYNHMET). Metabolite identification and quantification by this method result in a higher accuracy compared to the use of the two techniques separately, even in urine, one of the most challenging biofluids to characterize due to its complexity and variability. We quantified a total of 165 metabolites in the urine of healthy subjects, patients with chronic cystitis, and patients with bladder cancer, with a minimum number of missing values. This result was achieved without the use of analytical standards and calibration curves. A patient's personalized profile can be mapped out from the final dataset's concentrations by comparing them with known normal ranges. This detailed picture has potential applications in clinical practice to monitor a patient's health status and disease progression.
Collapse
Affiliation(s)
- Greta Petrella
- Department of Chemical Science and Technology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.P.); (S.L.); (G.C.); (D.V.)
| | - Camilla Montesano
- Chemistry Department, University of Rome “Sapienza”, 00185 Rome, Italy;
| | - Sara Lentini
- Department of Chemical Science and Technology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.P.); (S.L.); (G.C.); (D.V.)
| | - Giorgia Ciufolini
- Department of Chemical Science and Technology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.P.); (S.L.); (G.C.); (D.V.)
| | - Domitilla Vanni
- Department of Chemical Science and Technology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.P.); (S.L.); (G.C.); (D.V.)
| | - Roberto Speziale
- IRBM S.p.A., 00071 Pomezia, Italy; (R.S.); (V.S.); (L.O.); (E.M.)
| | - Andrea Salonia
- Urological Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (A.S.); (F.M.); (R.V.)
- Division of Experimental Oncology, URI Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesco Montorsi
- Urological Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (A.S.); (F.M.); (R.V.)
- Division of Experimental Oncology, URI Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Vincenzo Summa
- IRBM S.p.A., 00071 Pomezia, Italy; (R.S.); (V.S.); (L.O.); (E.M.)
| | - Riccardo Vago
- Urological Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (A.S.); (F.M.); (R.V.)
- Division of Experimental Oncology, URI Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Orsatti
- IRBM S.p.A., 00071 Pomezia, Italy; (R.S.); (V.S.); (L.O.); (E.M.)
| | - Edith Monteagudo
- IRBM S.p.A., 00071 Pomezia, Italy; (R.S.); (V.S.); (L.O.); (E.M.)
| | - Daniel Oscar Cicero
- Department of Chemical Science and Technology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.P.); (S.L.); (G.C.); (D.V.)
| |
Collapse
|