2
|
Feys S, Gonçalves SM, Khan M, Choi S, Boeckx B, Chatelain D, Cunha C, Debaveye Y, Hermans G, Hertoghs M, Humblet-Baron S, Jacobs C, Lagrou K, Marcelis L, Maizel J, Meersseman P, Nyga R, Seldeslachts L, Starick MR, Thevissen K, Vandenbriele C, Vanderbeke L, Vande Velde G, Van Regenmortel N, Vanstapel A, Vanmassenhove S, Wilmer A, Van De Veerdonk FL, De Hertogh G, Mombaerts P, Lambrechts D, Carvalho A, Van Weyenbergh J, Wauters J. Lung epithelial and myeloid innate immunity in influenza-associated or COVID-19-associated pulmonary aspergillosis: an observational study. THE LANCET. RESPIRATORY MEDICINE 2022; 10:1147-1159. [PMID: 36029799 PMCID: PMC9401975 DOI: 10.1016/s2213-2600(22)00259-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Influenza-associated pulmonary aspergillosis (IAPA) and COVID-19-associated pulmonary aspergillosis (CAPA) affect about 15% of critically ill patients with influenza or COVID-19, respectively. These viral-fungal coinfections are difficult to diagnose and are associated with increased mortality, but data on their pathophysiology are scarce. We aimed to explore the role of lung epithelial and myeloid innate immunity in patients with IAPA or CAPA. METHODS In this observational study, we retrospectively recruited patients who had been admitted to the intensive care unit (ICU) of University Hospitals Leuven, Belgium, requiring non-invasive or invasive ventilation because of severe influenza or COVID-19, with or without aspergillosis, between Jan 1, 2011, and March 31, 2021, whose bronchoalveolar lavage samples were available at the hospital biobank. Additionally, biobanked in vivo tracheobronchial biopsy samples from patients with IAPA or CAPA and invasive Aspergillus tracheobronchitis admitted to ICUs requiring invasive ventilation between the same dates were collected from University Hospitals Leuven, Hospital Network Antwerp (Belgium), and Amiens-Picardie University Hospital (France). We did nCounter gene expression analysis of 755 genes linked to myeloid innate immunity and protein analysis of 47 cytokines, chemokines, and growth factors on the bronchoalveolar lavage samples. Gene expression data were used to infer cell fractions by use of CIBERSORTx, to perform hypergeometric enrichment pathway analysis and gene set enrichment analysis, and to calculate pathway module scores for the IL-1β, TNF-α, type I IFN, and type II IFN (IFNγ) pathways. We did RNAScope targeting influenza virus or SARS-CoV-2 RNA and GeoMx spatial transcriptomics on the tracheobronchial biopsy samples. FINDINGS Biobanked bronchoalveolar lavage samples were retrieved from 166 eligible patients, of whom 40 had IAPA, 52 had influenza without aspergillosis, 33 had CAPA, and 41 had COVID-19 without aspergillosis. We did nCounter gene expression analysis on bronchoalveolar lavage samples from 134 patients, protein analysis on samples from 162 patients, and both types of analysis on samples from 130 patients. We performed RNAScope and spatial transcriptomics on the tracheobronchial biopsy samples from two patients with IAPA plus invasive Aspergillus tracheobronchitis and two patients with CAPA plus invasive Aspergillus tracheobronchitis. We observed a downregulation of genes associated with antifungal effector functions in patients with IAPA and, to a lesser extent, in patients with CAPA. We found a downregulated expression of several genes encoding proteins with functions in the opsonisation, recognition, and killing of conidia in patients with IAPA versus influenza only and in patients with CAPA versus COVID-19 only. Several genes related to LC3-associated phagocytosis, autophagy, or both were differentially expressed. Patients with CAPA had significantly lower neutrophil cell fractions than did patients with COVID-19 only. Patients with IAPA or CAPA had downregulated IFNγ signalling compared with patients with influenza only or COVID-19 only, respectively. The concentrations of several fibrosis-related growth factors were significantly elevated in the bronchoalveolar lavage fluid from patients with IAPA versus influenza only and from patients with CAPA versus COVID-19 only. In one patient with CAPA, we visualised an active or very recent SARS-CoV-2 infection disrupting the epithelial barrier, facilitating tissue-invasive aspergillosis. INTERPRETATION Our results reveal a three-level breach in antifungal immunity in IAPA and CAPA, affecting the integrity of the epithelial barrier, the capacity to phagocytise and kill Aspergillus spores, and the ability to destroy Aspergillus hyphae, which is mainly mediated by neutrophils. The potential of adjuvant IFNγ in the treatment of IAPA and CAPA should be investigated. FUNDING Research Foundation Flanders, Coronafonds, the Max Planck Society, the Fundação para a Ciência e a Tecnologia, the European Regional Development Fund, "la Caixa" Foundation, and Horizon 2020.
Collapse
Affiliation(s)
- Simon Feys
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium,Medical Intensive Care Uni, University Hospitals Leuven, Leuven, Belgium
| | - Samuel M Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mona Khan
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Sumin Choi
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Bram Boeckx
- Department of Human Genetics, KU Leuven, Leuven, Belgium,VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Denis Chatelain
- Department of Pathology, CHU Amiens Picardie, Amiens, France
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Yves Debaveye
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium,Department of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Greet Hermans
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium,Medical Intensive Care Uni, University Hospitals Leuven, Leuven, Belgium
| | - Marjan Hertoghs
- Department of Pathology, Network Hospitals GZA-ZNA, Antwerp, Belgium
| | | | - Cato Jacobs
- Medical Intensive Care Uni, University Hospitals Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium,Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Lukas Marcelis
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Julien Maizel
- Department of Medical Intensive Care, CHU Amiens Picardie, Amiens, France
| | - Philippe Meersseman
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium,Medical Intensive Care Uni, University Hospitals Leuven, Leuven, Belgium
| | - Rémy Nyga
- Department of Medical Intensive Care, CHU Amiens Picardie, Amiens, France
| | | | | | - Karin Thevissen
- Department of Microbial and Molecular Systems, Center of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Christophe Vandenbriele
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium,Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Lore Vanderbeke
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium,Medical Intensive Care Uni, University Hospitals Leuven, Leuven, Belgium
| | | | - Niels Van Regenmortel
- Department of Intensive Care Medicine, ZNA Stuivenberg, Antwerp, Belgium,Department of Intensive Care Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Arno Vanstapel
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Sam Vanmassenhove
- Department of Human Genetics, KU Leuven, Leuven, Belgium,VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Alexander Wilmer
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium,Medical Intensive Care Uni, University Hospitals Leuven, Leuven, Belgium
| | | | - Gert De Hertogh
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium,Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Diether Lambrechts
- Department of Human Genetics, KU Leuven, Leuven, Belgium,VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Johan Van Weyenbergh
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium,Medical Intensive Care Uni, University Hospitals Leuven, Leuven, Belgium,Correspondence to: Dr Joost Wauters, Medical Intensive Care Unit, University Hospitals Leuven, Leuven 3000, Belgium
| |
Collapse
|
4
|
Bruno M, Dewi IM, Matzaraki V, ter Horst R, Pekmezovic M, Rösler B, Groh L, Röring RJ, Kumar V, Li Y, Carvalho A, Netea MG, Latgé JP, Gresnigt MS, van de Veerdonk FL. Comparative host transcriptome in response to pathogenic fungi identifies common and species-specific transcriptional antifungal host response pathways. Comput Struct Biotechnol J 2020; 19:647-663. [PMID: 33510868 PMCID: PMC7817431 DOI: 10.1016/j.csbj.2020.12.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Candidiasis, aspergillosis, and mucormycosis cause the majority of nosocomial fungal infections in immunocompromised patients. Using an unbiased transcriptional profiling in PBMCs exposed to the fungal species causing these infections, we found a core host response in healthy individuals that may govern effective fungal clearance: it consists of 156 transcripts, involving canonical and non-canonical immune pathways. Systematic investigation of key steps in antifungal host defense revealed fungal-specific signatures. As previously demonstrated, Candida albicans induced type I and Type II interferon-related pathways. In contrast, central pattern recognition receptor, reactive oxygen species production, and host glycolytic pathways were down-regulated in response to Rhizopus oryzae, which was associated with an ER-stress response. TLR5 was identified to be uniquely regulated by Aspergillus fumigatus and to control cytokine release in response to this fungus. In conclusion, our data reveals the transcriptional profiles induced by C. albicans, A. fumigatus, and R. oryzae, and describes both the common and specific antifungal host responses that could be exploited for novel therapeutic strategies.
Collapse
Affiliation(s)
- Mariolina Bruno
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Intan M.W. Dewi
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vicky Matzaraki
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob ter Horst
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marina Pekmezovic
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a 07745, Jena, Germany
| | - Berenice Rösler
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laszlo Groh
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rutger J. Röring
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vinod Kumar
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yang Li
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
- Centre for Individualised Infection Medicine (CiiM) and TWINCORE, Joint Ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Mihai G. Netea
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | | | - Mark S. Gresnigt
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a 07745, Jena, Germany
| | - Frank L. van de Veerdonk
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|