1
|
Stilling J, Kim JH, Cust S, Keser Z, Murter JL, Tippet DC, Hillis AE, Sebastian R. Cerebello-Cerebral Resting-State Functional Connectivity in Poststroke Aphasia. Brain Connect 2025; 15:40-54. [PMID: 39531223 DOI: 10.1089/brain.2023.0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Introduction: The influence of the cerebellum in poststroke aphasia recovery is poorly understood. Despite the right cerebellum being identified as a critical region involved in both language and cognitive functions, little is known about functional connections between the cerebellum and bilateral cortical hemispheres following stroke. This study investigated the relationship between chronic poststroke naming deficits and cerebello-cerebral resting-state functional connectivity (FC). Methods: Twenty-five cognitively normal participants and 42 participants with chronic poststroke aphasia underwent resting-state functional magnetic resonance imaging. Participants with aphasia also underwent language assessment. We conducted regions of interest (ROI)-to-ROI analyses to investigate the FC between the right cerebellar Crus I/II (seed ROI; Cereb1r/Cereb2r) and bilateral cortical language regions and compared these results to cognitively normal controls. Single-subject connectivity parameters were extracted and used as independent variables in a stepwise multiple linear regression model associating Boston Naming Test (BNT) score with FC measures. Results: FC analyses demonstrated correlations between the right cerebellar Crus I/II and both left and right cortical regions for both cognitively normal controls and stroke participants. Additionally, aphasia severity and lesion load had an effect on the cerebello-cerebral network connectivity in participants with aphasia. In a stepwise multiple linear regression, controlling for aphasia severity, time poststroke and lesion load, FC between the right Cereb2-left Cereb1 (standardized beta [std B]= -0.255, p < 0.004), right Cereb2-right anterior MTG (std B = 0.259, p < 0.004), and the right Cereb2-left anterior STG (std B = -0.208, p < 0.018) were significant predictors of BNT score. The overall model fit was R2 = 0.786 (p = 0.001). Conclusion: Functional connections between the right cerebellum and residual bilateral cerebral hemisphere regions may play a role in predicting naming ability in poststroke aphasia.
Collapse
Affiliation(s)
- Joan Stilling
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Rehabilitation Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Ji Hyun Kim
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sarah Cust
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zafer Keser
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jamie L Murter
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Donna C Tippet
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Argye E Hillis
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Cognitive Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rajani Sebastian
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Oishi K, Soldan A, Pettigrew C, Hsu J, Mori S, Albert M, Oishi K. Changes in pairwise functional connectivity associated with changes in cognitive performance in cognitively normal older individuals: A two-year observational study. Neurosci Lett 2022; 781:136618. [PMID: 35398188 PMCID: PMC9990522 DOI: 10.1016/j.neulet.2022.136618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/15/2022] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
Neurobiological substrates of cognitive decline in cognitively normal older individuals have been investigated by resting-state functional magnetic resonance imaging, but little is known about the relationship between longitudinal changes in the whole brain. In this study, we examined two-year changes in functional connectivity among 80 gray matter areas and investigated the relationship to two-year changes in cognitive performance. A cross-validated permutation variable importance measure was applied to select features related to a change in cognitive performance. Age-corrected changes in eleven pairs of functional connections were selected as important features, all related to brain areas that belong to the default mode network. A linear regression model with cross-validation demonstrated a mean correlation coefficient of 0.55 between measured and predicted changes in the cognitive composite score. These results suggest that intra- and inter-network connections in the default mode network are associated with cognitive changes over two years among cognitively normal individuals.
Collapse
Affiliation(s)
- Kumiko Oishi
- Center for Imaging Science, The Johns Hopkins University, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Anja Soldan
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Corinne Pettigrew
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Johnny Hsu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susumu Mori
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marilyn Albert
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenichi Oishi
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|