1
|
Vergès-Castillo A, González-Vargas IA, Muñoz-Cueto JA, Martín-Robles ÁJ, Pendon C. Establishment and characterisation of single cell-derived embryonic stem cell lines from the gilthead seabream, Sparus aurata. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110626. [PMID: 34044158 DOI: 10.1016/j.cbpb.2021.110626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 04/16/2021] [Accepted: 05/21/2021] [Indexed: 12/27/2022]
Abstract
An important bottleneck in fish aquaculture research is the supply and maintenance of embryos, larvae, juvenile and adult specimens. In this context, cell lines represent alternative experimental models for in vitro studies that complement in vivo assays. This allows us to perform easier experimental design and sampling and avoid the sacrifice of animals. Embryonic stem (ES) cell lines have attracted increasing attention because they have the capability to proliferate indefinitely and could be differentiated into any cell type of the organism. To minimise cell heterogeneity and increase uniformity of in vitro studies results, in this manuscript we report the development and characterisation of two single cell-derived ES cell lines (monoclonal) from the morula stage embryos of the gilthead seabream, Sparus aurata, named as SAEC-A3 and SAEC-H7. Both cell lines have been passaged for over 100 times, indicating the establishment of long-term, immortalised ES cell cultures. Sequence analyses confirmed the seabream origin of the cell lines, and growth analyses evidenced their high viability and proliferating activity, particularly in culture medium supplemented with 10-15% fetal bovine serum and 22 °C. Both cell lines showed the ability to generate embryoid bodies and show different sensitivity and response to all-trans retinoic acid. The analysis of epithelial (col1α1) and neuronal (sox3) markers in differentiated cultures revealed that SAEC-A3 tended to differentiate towards epithelial-like cells whereas SAEC-H7 tended to differentiate towards neuronal-like cells. Both cell lines were efficiently transfected with pDsRed2-ER and/or pEGFP-N1 plasmids, indicating that they could represent useful biotechnological tools. Daily expression of pcna showed significant expression rhythms, with maximum levels of cell proliferation during the day-night transition. Currently, these cell lines are being successfully used as experimental models for the study of cellular metabolism, physiology and rhythms as well as for toxicological, pharmacological and gene expression analyses.
Collapse
Affiliation(s)
- A Vergès-Castillo
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real, Cádiz, Spain.
| | - I A González-Vargas
- Bioquímica y Biología Molecular, Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, Puerto Real, Cádiz, Spain; Departamento de Ciencias Naturales, Exactas y Estadística, Facultad de Ciencias, Universidad de Santiago de Cali, Cali, Colombia
| | - J A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real, Cádiz, Spain; INMAR Research Institute, Marine Campus of International Excellence (CEIMAR), Agrifood Campus of International Excellence (ceiA3), The European University of the Seas (SEA-EU), University of Cádiz, Puerto Real, Cádiz, Spain.
| | - Á J Martín-Robles
- Bioquímica y Biología Molecular, Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, Puerto Real, Cádiz, Spain; INMAR Research Institute, Marine Campus of International Excellence (CEIMAR), Agrifood Campus of International Excellence (ceiA3), The European University of the Seas (SEA-EU), University of Cádiz, Puerto Real, Cádiz, Spain.
| | - C Pendon
- Bioquímica y Biología Molecular, Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, Puerto Real, Cádiz, Spain; INBIO, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz, Spain.
| |
Collapse
|
2
|
Morales Pantoja IE, Smith MD, Rajbhandari L, Cheng L, Gao Y, Mahairaki V, Venkatesan A, Calabresi PA, Fitzgerald KC, Whartenby KA. iPSCs from people with MS can differentiate into oligodendrocytes in a homeostatic but not an inflammatory milieu. PLoS One 2020; 15:e0233980. [PMID: 32511247 PMCID: PMC7279569 DOI: 10.1371/journal.pone.0233980] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/15/2020] [Indexed: 11/19/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory and demyelinating disease of the central nervous system (CNS) that results in variable severities of neurodegeneration. The understanding of MS has been limited by the inaccessibility of the affected cells and the lengthy timeframe of disease development. However, recent advances in stem cell technology have facilitated the bypassing of some of these challenges. Towards gaining a greater understanding of the innate potential of stem cells from people with varying degrees of disability, we generated induced pluripotent stem cells (iPSCs) from peripheral blood mononuclear cells derived from stable and progressive MS patients, and then further differentiated them into oligodendrocyte (OL) lineage cells. We analyzed differentiation under both homeostatic and inflammatory conditions via sustained exposure to low-dose interferon gamma (IFNγ), a prominent cytokine in MS. We found that all iPSC lines differentiated into mature myelinating OLs, but chronic exposure to IFNγ dramatically inhibited differentiation in both MS groups, particularly if exposure was initiated during the pre-progenitor stage. Low-dose IFNγ was not toxic but led to an early upregulation of interferon response genes in OPCs followed by an apparent redirection in lineage commitment from OL to a neuron-like phenotype in a significant portion of the treated cells. Our results reveal that a chronic low-grade inflammatory environment may have profound effects on the efficacy of regenerative therapies.
Collapse
Affiliation(s)
- Itzy E. Morales Pantoja
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Matthew D. Smith
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Labchan Rajbhandari
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Linzhao Cheng
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yongxing Gao
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Vasiliki Mahairaki
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Arun Venkatesan
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Peter A. Calabresi
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kathryn C. Fitzgerald
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Department of Epidemiology Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Katharine A. Whartenby
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
3
|
Kanthaswamy S, Ng J, Oldt RF, Phillippi-Falkenstein K, Kubisch HM. SNP-based genetic characterization of the Tulane National Primate Research Center's conventional and specific pathogen-free rhesus macaque (Macaca mulatta) populations. J Med Primatol 2017. [PMID: 28639374 DOI: 10.1111/jmp.12284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The rhesus macaque is an important biomedical model organism, and the Tulane National Primate Research Center (TNPRC) has one of the largest rhesus macaque breeding colonies in the United States. METHODS SNP profiles from 3266 rhesus macaques were used to examine the TNPRC colony genetic composition over time and across conventional or SPF animals of Chinese and Indian ancestry. RESULTS Chinese origin animals were the least genetically diverse and the most inbred; however, since their derivation from their conventional forebearers, neither the Chinese nor the Indian SPF animals exhibit any significant loss of genetic diversity or differentiation. CONCLUSIONS The TNPRC colony managers have successfully minimized loss in genetic variation across generations. Although founder effects and bottlenecks among the Indian animals have been successfully curtailed, the Chinese subpopulation still show some influences from these events.
Collapse
Affiliation(s)
- Sree Kanthaswamy
- School of Mathematics and Natural Sciences, Arizona State University (ASU) at the West Campus, Glendale, AZ, USA.,Julie Ann Wrigley Global Institute of Sustainability, Arizona State University, Tempe, AZ, USA.,Evolutionary Biology PhD program, School of Life Sciences, Arizona State University, Tempe, AZ, USA.,California National Primate Research Center, University of California, Davis, CA, USA
| | - Jillian Ng
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Robert F Oldt
- School of Mathematics and Natural Sciences, Arizona State University (ASU) at the West Campus, Glendale, AZ, USA.,Evolutionary Biology PhD program, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - H Michael Kubisch
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA, USA
| |
Collapse
|
4
|
Huma T, Hu X, Ma Y, Willden A, Rizak J, Shahab M, Wang Z. Kisspeptin-10 treatment generated specific GnRH expression in cells differentiated from rhesus monkey derived Lyon NSCs. Neuroscience 2017; 349:318-329. [DOI: 10.1016/j.neuroscience.2017.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 02/06/2017] [Accepted: 03/02/2017] [Indexed: 01/01/2023]
|
5
|
Li YC, Tsai LK, Wang JH, Young TH. A neural stem/precursor cell monolayer for neural tissue engineering. Biomaterials 2014; 35:1192-204. [DOI: 10.1016/j.biomaterials.2013.10.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 10/20/2013] [Indexed: 11/30/2022]
|
6
|
Kisspeptin-10 modulates the proliferation and differentiation of the rhesus monkey derived stem cell line: R366.4. ScientificWorldJournal 2013; 2013:135470. [PMID: 24381507 PMCID: PMC3863535 DOI: 10.1155/2013/135470] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/09/2013] [Indexed: 01/07/2023] Open
Abstract
The rhesus monkey embryonic stem cell line R366.4 has been identified to differentiate into a number of cell types. However, it has not been well characterized for its response to drugs affecting reproductive endocrinology. Kisspeptins (KPs) are ligands for the GPR-54, which is known to modulate reproductive function. The current study was designed to determine the effect of the KP-10 peptide on R366.4 cells and to investigate the role of KP-GPR54 in the cell proliferation process. Four different doses (0.1, 1, 10, and 100 nM) of KP-10 and control were selected to evaluate cell growth parameters and cellular morphological changes over a 72 hr period. The cells were treated with kisspeptin-10 during the early rosette stage. Proliferation rates, analyzed by flow cytometry and cell count methods, were found to be decreased after treatment. Moreover, the number of rosettes was found to decrease following KP-10 treatments. Morphological changes consisting of neuronal projections were also witnessed. This suggested that KP-10 had an antiproliferative effect on R366.4 cells leading to a differentiation state and morphological changes consistent with neuronal stem cell development. The R366.4 stem cell line differentiates based on kisspeptin signaling and may be used to investigate reproductive cell endocrinology in vitro.
Collapse
|
7
|
Kothapalli CR, Kamm RD. 3D matrix microenvironment for targeted differentiation of embryonic stem cells into neural and glial lineages. Biomaterials 2013; 34:5995-6007. [PMID: 23694902 DOI: 10.1016/j.biomaterials.2013.04.042] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 04/23/2013] [Indexed: 12/13/2022]
Abstract
The onset of neurodegenerative disorders is characterized by the progressive dysfunction and loss of subpopulations of specialized cells within specific regions of the central nervous system (CNS). Since CNS has a limited ability for self-repair and regeneration under such conditions, clinical transplantation of stem cells has been explored as an alternative. Although embryonic stem cells (ESCs) offer a promising therapeutic platform to treat a variety of neurodegenerative disorders, the niche microenvironment, which could regulate their differentiation into specialized lineages on demand, needs to be optimized for successful clinical transplantation. Here, we evaluated the synergistic role of matrix microenvironment (type, architecture, composition, stiffness) and signaling molecules (type, dosage) on murine ESC differentiation into specific neural and glial lineages. ESCs were cultured as embryoid bodies on either 2D substrates or within 3D scaffolds, in the presence or absence of retinoic acid (RA) and sonic hedgehog (Shh). Results showed that ESCs maintained their stemness even after 4 days in the absence of exogenous signaling molecules, as evidenced by Oct-4 staining. RA at 1 μM dosage was deemed optimal for neural differentiation and neurite outgrowth on collagen-1 coated substrates. Significant neural differentiation with robust neurite outgrowth and branching was evident only on collagen-1 coated 2D substrates and within 3D matrigel scaffolds, in the presence of 1 μM RA. Blocking α6 or β1 integrin subunits on differentiating cells inhibited matrigel-induced effects on neural differentiation and neurite outgrowth. Hydrogel concentration strongly regulated formation of neural and astrocyte lineages in 1 μM RA additive cultures. When RA and Shh were provided, either alone or together, 3D collagen-1 scaffolds enhanced significant motor neuron formation, while 3D matrigel stimulated dopaminergic neuron differentiation. These results suggest a synergistic role of microenvironmental cues for ESC differentiation and maturation, with potential applications in cell transplantation therapy.
Collapse
Affiliation(s)
- Chandrasekhar R Kothapalli
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH 44115, USA.
| | | |
Collapse
|
8
|
Efficient derivation of multipotent neural stem/progenitor cells from non-human primate embryonic stem cells. PLoS One 2012; 7:e49469. [PMID: 23166679 PMCID: PMC3498141 DOI: 10.1371/journal.pone.0049469] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/09/2012] [Indexed: 01/02/2023] Open
Abstract
The common marmoset (Callithrix jacchus) is a small New World primate that has been used as a non-human primate model for various biomedical studies. We previously demonstrated that transplantation of neural stem/progenitor cells (NS/PCs) derived from mouse and human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) promote functional locomotor recovery of mouse spinal cord injury models. However, for the clinical application of such a therapeutic approach, we need to evaluate the efficacy and safety of pluripotent stem cell-derived NS/PCs not only by xenotransplantation, but also allotransplantation using non-human primate models to assess immunological rejection and tumorigenicity. In the present study, we established a culture method to efficiently derive NS/PCs as neurospheres from common marmoset ESCs. Marmoset ESC-derived neurospheres could be passaged repeatedly and showed sequential generation of neurons and astrocytes, similar to that of mouse ESC-derived NS/PCs, and gave rise to functional neurons as indicated by calcium imaging. Although marmoset ESC-derived NS/PCs could not differentiate into oligodendrocytes under default culture conditions, these cells could abundantly generate oligodendrocytes by incorporating additional signals that recapitulate in vivo neural development. Moreover, principal component analysis of microarray data demonstrated that marmoset ESC-derived NS/PCs acquired similar gene expression profiles to those of fetal brain-derived NS/PCs by repeated passaging. Therefore, marmoset ESC-derived NS/PCs may be useful not only for accurate evaluation by allotransplantation of NS/PCs into non-human primate models, but are also applicable to analysis of iPSCs established from transgenic disease model marmosets.
Collapse
|
9
|
[Rhesus monkey embryonic stem cells differentiation, proliferation and allotransplantation]. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2012; 33:43-8. [PMID: 22345007 DOI: 10.3724/sp.j.1141.2012.01043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To investigate the characteristics of rhesus monkey embryonic stem cells and to promote their clinical application, the differentiation and proliferation of rosettes neural stem cells from GFP marked rhesus monkey embryonic stem cells were studied The results showed that: 1) A stable and high-efficient neural differentiation system was established. More than 95% of the embryonic stem cells were differentiated into neural stem cells on the 12(th) days of differentiation; 2) the rosettes neural stem cells differentiated from the rhesus monkey embryonic stem cells could maintain their rosettes-shape by proliferating with bFGF/EGF; 3) the neural stem cells could differentiate into neurons after transplanted into the rhesus monkey brain. In conclusion, the rosettes neural stem cells differentiated from rhesus monkey embryonic stem cells could maintain their characteristics after proliferation with bFGF/EGF and they could survive and differentiate into neurons after transplanted into the rhesus monkey brain, which strongly supports the clinical application of neural stem cells in the future.
Collapse
|
10
|
Garbossa D, Boido M, Fontanella M, Fronda C, Ducati A, Vercelli A. Recent therapeutic strategies for spinal cord injury treatment: possible role of stem cells. Neurosurg Rev 2012; 35:293-311; discussion 311. [PMID: 22539011 DOI: 10.1007/s10143-012-0385-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 09/27/2011] [Accepted: 11/20/2011] [Indexed: 01/01/2023]
Abstract
Spinal cord injury (SCI) often results in significant dysfunction and disability. A series of treatments have been proposed to prevent and overcome the formation of the glial scar and inhibitory factors to axon regrowth. In the last decade, cell therapy has emerged as a new tool for several diseases of the nervous system. Stem cells act as minipumps providing trophic and immunomodulatory factors to enhance axonal growth, to modulate the environment, and to reduce neuroinflammation. This capability can be boosted by genetical manipulation to deliver trophic molecules. Different types of stem cells have been tested, according to their properties and the therapeutic aims. They differ from each other for origin, developmental stage, stage of differentiation, and fate lineage. Related to this, stem cells differentiating into neurons could be used for cell replacement, even though the feasibility that stem cells after transplantation in the adult lesioned spinal cord can differentiate into neurons, integrate within neural circuits, and emit axons reaching the muscle is quite remote. The timing of cell therapy has been variable, and may be summarized in the acute and chronic phases of disease, when stem cells interact with a completely different environment. Even though further experimental studies are needed to elucidate the mechanisms of action, the therapeutic, and the side effects of cell therapy, several clinical protocols have been tested or are under trial. Here, we report the state-of-the-art of cell therapy in SCI, in terms of feasibility, outcome, and side effects.
Collapse
Affiliation(s)
- D Garbossa
- Department of Neurosurgery, S. Giovanni Battista Hospital, University of Torino, Via Cherasco 15, 10126, Torino, Italy.
| | | | | | | | | | | |
Collapse
|
11
|
Decimo I, Bifari F, Rodriguez FJ, Malpeli G, Dolci S, Lavarini V, Pretto S, Vasquez S, Sciancalepore M, Montalbano A, Berton V, Krampera M, Fumagalli G. Nestin- and doublecortin-positive cells reside in adult spinal cord meninges and participate in injury-induced parenchymal reaction. Stem Cells 2012; 29:2062-76. [PMID: 22038821 PMCID: PMC3468739 DOI: 10.1002/stem.766] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Adult spinal cord has little regenerative potential, thus limiting patient recovery following injury. In this study, we describe a new population of cells resident in the adult rat spinal cord meninges that express the neural stem/precursor markers nestin and doublecortin. Furthermore, from dissociated meningeal tissue a neural stem cell population was cultured in vitro and subsequently shown to differentiate into functional neurons or mature oligodendrocytes. Proliferation rate and number of nestin- and doublecortin-positive cells increased in vivo in meninges following spinal cord injury. By using a lentivirus-labeling approach, we show that meningeal cells, including nestin- and doublecortin-positive cells, migrate in the spinal cord parenchyma and contribute to the glial scar formation. Our data emphasize the multiple roles of meninges in the reaction of the parenchyma to trauma and indicate for the first time that spinal cord meninges are potential niches harboring stem/precursor cells that can be activated by injury. Meninges may be considered as a new source of adult stem/precursor cells to be further tested for use in regenerative medicine applied to neurological disorders, including repair from spinal cord injury. Stem Cells 2011;29:2062–2076.
Collapse
Affiliation(s)
- Ilaria Decimo
- Department of Public Health and Community Medicine, Section of Pharmacology, University of Verona, Verona, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bian H, Fan YD, Guo LY, Yu HL. [A technique of rhesus monkey neural progenitor cells intravitreal transplant to rats]. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2012; 33:85-8. [PMID: 22345014 DOI: 10.3724/sp.j.1141.2012.01085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To investigate a simple and effective intraocular xenotransplant technique of rhesus monkey neural progenitor cells to rats, mechanical injury was induced in the rat's right retina. And the GFP-labeled rhesus monkey neural progenitor cells suspension was slowly injected into the vitreous space of the right injured and left control eye. Confocal image suggested that the xenografted cells survived in both the injured and control eye, meanwhile the cells integrated in the injured right retina. The results demonstrated that intravitreal xenotransplant could be adopted as a simple and reliable method.
Collapse
Affiliation(s)
- Hui Bian
- Department of Minimally Invasive Neurosurgery, First Affiliated Hospital of Kunming Medical College, Kunming,China
| | | | | | | |
Collapse
|
13
|
Kubisch HM, Falkenstein KP, Deroche CB, Franke DE. Reproductive efficiency of captive Chinese- and Indian-origin rhesus macaque (Macaca mulatta) females. Am J Primatol 2012; 74:174-84. [PMID: 22512021 PMCID: PMC3335760 DOI: 10.1002/ajp.21019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Reproductive and survival records (n=2,913) from 313 Chinese-origin and 365 Indian-derived rhesus macaques at the Tulane National Primate Research Center (TNPRC) spanning three generations were studied. Least-squares analysis of variance procedures were used to compare reproductive and infant survival traits while proportional hazards regression procedures were used to study female age at death, number of infants born per female, and time from last birth to death. Chinese females were older at first parturition than Indian females because they were older when placed with males, but the two subspecies had similar first postpartum birth interval (1st PPBI) and lifetime postpartum birth interval (LPPBI). Females that gave birth to stillborn infants had shorter first postpartum birth intervals (1st PPBI) than females giving birth to live infants. Postpartum birth intervals decreased in females from age 3 to 12 but then increased again with advancing age. Chinese infants had a greater survival rate than Indian infants at 30 days, 6 months, and 1 year of age. Five hundred and forty-three females (80.01%) had uncensored, or true records for age at death, number of infants born per female, and time from the birth until death whereas 135 females (19.91%) had censored records for these traits. Low- and high-uncensored observations for age at death were 3 and 26 years for Chinese, and 3 and 23 years for Indian females. Uncensored number of infants born per female ranged from 1 to 15 for Chinese females and 1 to 18 for Indian females. Each of these traits was significantly influenced by the origin×generation interaction in the proportional hazards regression analyses, indicating that probabilities associated with age at death, number of infants born per female, and time from last birth to death for Chinese and Indian females did not rank the same across generations.
Collapse
|
14
|
Singh AV, Gailite L, Vyas V, Lenardi C, Forti S, Matteoli M, Milani P. Rapid prototyping of nano- and micro-patterned substrates for the control of cell neuritogenesis by topographic and chemical cues. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2011.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Human cytomegalovirus infection causes premature and abnormal differentiation of human neural progenitor cells. J Virol 2010; 84:3528-41. [PMID: 20071566 DOI: 10.1128/jvi.02161-09] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Congenital human cytomegalovirus (HCMV) infection is a leading cause of birth defects, largely manifested as central nervous system (CNS) disorders. The principal site of manifestations in the mouse model is the fetal brain's neural progenitor cell (NPC)-rich subventricular zone. Our previous human NPC studies found these cells to be fully permissive for HCMV and a useful in vitro model system. In continuing work, we observed that under culture conditions favoring maintenance of multipotency, infection caused NPCs to quickly and abnormally differentiate. This phenotypic change required active viral transcription. Whole-genome expression analysis found rapid downregulation of genes that maintain multipotency and establish NPCs' neural identity. Quantitative PCR, Western blot, and immunofluorescence assays confirmed that the mRNA and protein levels of four hallmark NPC proteins (nestin, doublecortin, sex-determining homeobox 2, and glial fibrillary acidic protein) were decreased by HCMV infection. The decreases required active viral replication and were due, at least in part, to proteasomal degradation. Our results suggest that HCMV infection causes in utero CNS defects by inducing both premature and abnormal differentiation of NPCs.
Collapse
|