1
|
Butler K, Ahmed S, Jablonski J, Hookway TA. Engineered Cardiac Microtissue Biomanufacturing Using Human Induced Pluripotent Stem Cell Derived Epicardial Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593960. [PMID: 38798424 PMCID: PMC11118268 DOI: 10.1101/2024.05.13.593960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Epicardial cells are a crucial component in constructing in vitro 3D tissue models of the human heart, contributing to the ECM environment and the resident mesenchymal cell population. Studying the human epicardium and its development from the proepicardial organ is difficult, but induced pluripotent stem cells can provide a source of human epicardial cells for developmental modeling and for biomanufacturing heterotypic cardiac tissues. This study shows that a robust population of epicardial cells (approx. 87.7% WT1+) can be obtained by small molecule modulation of the Wnt signaling pathway. The population maintains WT1 expression and characteristic epithelial morphology over successive passaging, but increases in size and decreases in cell number, suggesting a limit to their expandability in vitro. Further, low passage number epicardial cells formed into more robust 3D microtissues compared to their higher passage counterparts, suggesting that the ideal time frame for use of these epicardial cells for tissue engineering and modeling purposes is early on in their differentiated state. Additionally, the differentiated epicardial cells displayed two distinct morphologic sub populations with a subset of larger, more migratory cells which led expansion of the epicardial cells across various extracellular matrix environments. When incorporated into a mixed 3D co-culture with cardiomyocytes, epicardial cells promoted greater remodeling and migration without impairing cardiomyocyte function. This study provides an important characterization of stem cell-derived epicardial cells, identifying key characteristics that influence their ability to fabricate consistent engineered cardiac tissues.
Collapse
Affiliation(s)
- Kirk Butler
- Biomedical Engineering Department, Binghamton University, the State University of New York, Binghamton NY 13902
| | - Saif Ahmed
- Biomedical Engineering Department, Binghamton University, the State University of New York, Binghamton NY 13902
| | - Justin Jablonski
- Biomedical Engineering Department, University of Rochester, Rochester, NY14627
| | - Tracy A. Hookway
- Biomedical Engineering Department, Binghamton University, the State University of New York, Binghamton NY 13902
| |
Collapse
|
2
|
Rui Y, Zhou J, Zhen X, Zhang J, Liu S, Gao Y. TBX5 genetic variants and SCD-CAD susceptibility: insights from Chinese Han cohorts. PeerJ 2024; 12:e17139. [PMID: 38525280 PMCID: PMC10959103 DOI: 10.7717/peerj.17139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/28/2024] [Indexed: 03/26/2024] Open
Abstract
Background The prevention and prediction of sudden cardiac death (SCD) present persistent challenges, prompting exploration into common genetic variations for potential insights. T-box 5 (TBX5), a critical cardiac transcription factor, plays a pivotal role in cardiovascular development and function. This study systematically examined variants within the 500-bp region downstream of the TBX5 gene, focusing on their potential impact on susceptibility to SCD associated with coronary artery disease (SCD-CAD) in four different Chinese Han populations. Methods In a comprehensive case-control analysis, we explored the association between rs11278315 and SCD-CAD susceptibility using a cohort of 553 controls and 201 SCD-CAD cases. Dual luciferase reporter assays and genotype-phenotype correlation studies using human cardiac tissue samples as well as integrated in silicon analysis were applied to explore the underlining mechanism. Result Binary logistic regression results underscored a significantly reduced risk of SCD-CAD in individuals harboring the deletion allele (odds ratio = 0.70, 95% CI [0.55-0.88], p = 0.0019). Consistent with the lower transcriptional activity of the deletion allele observed in dual luciferase reporter assays, genotype-phenotype correlation studies on human cardiac tissue samples affirmed lower expression levels associated with the deletion allele at both mRNA and protein levels. Furthermore, our investigation revealed intriguing insights into the role of rs11278315 in TBX5 alternative splicing, which may contribute to alterations in its ultimate functional effects, as suggested by sQTL analysis. Gene ontology analysis and functional annotation further underscored the potential involvement of TBX5 in alternative splicing and cardiac-related transcriptional regulation. Conclusions In summary, our current dataset points to a plausible correlation between rs11278315 and susceptibility to SCD-CAD, emphasizing the potential of rs11278315 as a genetic risk marker for aiding in molecular diagnosis and risk stratification of SCD-CAD.
Collapse
Affiliation(s)
- Yukun Rui
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Ju Zhou
- Medical College of Soochow University, Suzhou, China
| | - Xiaoyuan Zhen
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Jianhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Shiquan Liu
- Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Beijing, China
| | - Yuzhen Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Hikspoors JPJM, Kruepunga N, Mommen GMC, Köhler SE, Anderson RH, Lamers WH. Human Cardiac Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:3-55. [PMID: 38884703 DOI: 10.1007/978-3-031-44087-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Many aspects of heart development are topographically complex and require three-dimensional (3D) reconstruction to understand the pertinent morphology. We have recently completed a comprehensive primer of human cardiac development that is based on firsthand segmentation of structures of interest in histological sections. We visualized the hearts of 12 human embryos between their first appearance at 3.5 weeks and the end of the embryonic period at 8 weeks. The models were presented as calibrated, interactive, 3D portable document format (PDF) files. We used them to describe the appearance and the subsequent remodeling of around 70 different structures incrementally for each of the reconstructed stages. In this chapter, we begin our account by describing the formation of the single heart tube, which occurs at the end of the fourth week subsequent to conception. We describe its looping in the fifth week, the formation of the cardiac compartments in the sixth week, and, finally, the septation of these compartments into the physically separated left- and right-sided circulations in the seventh and eighth weeks. The phases are successive, albeit partially overlapping. Thus, the basic cardiac layout is established between 26 and 32 days after fertilization and is described as Carnegie stages (CSs) 9 through 14, with development in the outlet component trailing that in the inlet parts. Septation at the venous pole is completed at CS17, equivalent to almost 6 weeks of development. During Carnegie stages 17 and 18, in the seventh week, the outflow tract and arterial pole undergo major remodeling, including incorporation of the proximal portion of the outflow tract into the ventricles and transfer of the spiraling course of the subaortic and subpulmonary channels to the intrapericardial arterial trunks. Remodeling of the interventricular foramen, with its eventual closure, is complete at CS20, which occurs at the end of the seventh week. We provide quantitative correlations between the age of human and mouse embryos as well as the Carnegie stages of development. We have also set our descriptions in the context of variations in the timing of developmental features.
Collapse
Affiliation(s)
- Jill P J M Hikspoors
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.
| | - Nutmethee Kruepunga
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Present address: Department of Anatomy, Mahidol University, Bangkok, Thailand
| | - Greet M C Mommen
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - S Eleonore Köhler
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Robert H Anderson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Wouter H Lamers
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Sanchez-Fernandez C, Rodriguez-Outeiriño L, Matias-Valiente L, Ramírez de Acuña F, Franco D, Aránega AE. Understanding Epicardial Cell Heterogeneity during Cardiogenesis and Heart Regeneration. J Cardiovasc Dev Dis 2023; 10:376. [PMID: 37754805 PMCID: PMC10531887 DOI: 10.3390/jcdd10090376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
The outermost layer of the heart, the epicardium, is an essential cell population that contributes, through epithelial-to-mesenchymal transition (EMT), to the formation of different cell types and provides paracrine signals to the developing heart. Despite its quiescent state during adulthood, the adult epicardium reactivates and recapitulates many aspects of embryonic cardiogenesis in response to cardiac injury, thereby supporting cardiac tissue remodeling. Thus, the epicardium has been considered a crucial source of cell progenitors that offers an important contribution to cardiac development and injured hearts. Although several studies have provided evidence regarding cell fate determination in the epicardium, to date, it is unclear whether epicardium-derived cells (EPDCs) come from specific, and predetermined, epicardial cell subpopulations or if they are derived from a common progenitor. In recent years, different approaches have been used to study cell heterogeneity within the epicardial layer using different experimental models. However, the data generated are still insufficient with respect to revealing the complexity of this epithelial layer. In this review, we summarize the previous works documenting the cellular composition, molecular signatures, and diversity within the developing and adult epicardium.
Collapse
Affiliation(s)
- Cristina Sanchez-Fernandez
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (C.S.-F.); (L.R.-O.); (L.M.-V.); (F.R.d.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| | - Lara Rodriguez-Outeiriño
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (C.S.-F.); (L.R.-O.); (L.M.-V.); (F.R.d.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| | - Lidia Matias-Valiente
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (C.S.-F.); (L.R.-O.); (L.M.-V.); (F.R.d.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| | - Felicitas Ramírez de Acuña
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (C.S.-F.); (L.R.-O.); (L.M.-V.); (F.R.d.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (C.S.-F.); (L.R.-O.); (L.M.-V.); (F.R.d.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| | - Amelia Eva Aránega
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (C.S.-F.); (L.R.-O.); (L.M.-V.); (F.R.d.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| |
Collapse
|
5
|
Wang M, Rücklin M, Poelmann RE, de Mooij CL, Fokkema M, Lamers GEM, de Bakker MAG, Chin E, Bakos LJ, Marone F, Wisse BJ, de Ruiter MC, Cheng S, Nurhidayat L, Vijver MG, Richardson MK. Nanoplastics causes extensive congenital malformations during embryonic development by passively targeting neural crest cells. ENVIRONMENT INTERNATIONAL 2023; 173:107865. [PMID: 36907039 DOI: 10.1016/j.envint.2023.107865] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/30/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Nanomaterials are widespread in the human environment as pollutants, and are being actively developed for use in human medicine. We have investigated how the size and dose of polystyrene nanoparticles affects malformations in chicken embryos, and have characterized the mechanisms by which they interfere with normal development. We find that nanoplastics can cross the embryonic gut wall. When injected into the vitelline vein, nanoplastics become distributed in the circulation to multiple organs. We find that the exposure of embryos to polystyrene nanoparticles produces malformations that are far more serious and extensive than has been previously reported. These malformations include major congenital heart defects that impair cardiac function. We show that the mechanism of toxicity is the selective binding of polystyrene nanoplastics nanoparticles to neural crest cells, leading to the death and impaired migration of those cells. Consistent with our new model, most of the malformations seen in this study are in organs that depend for their normal development on neural crest cells. These results are a matter of concern given the large and growing burden of nanoplastics in the environment. Our findings suggest that nanoplastics may pose a health risk to the developing embryo.
Collapse
Affiliation(s)
- Meiru Wang
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands
| | - Martin Rücklin
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands
| | - Robert E Poelmann
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Department of Cardiology, Leiden University Medical Center, The Netherlands
| | - Carmen L de Mooij
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Marjolein Fokkema
- Institute of Psychology, Methodology and Statistics, Pieter de la Court Building, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands
| | - Gerda E M Lamers
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Merijn A G de Bakker
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Ernest Chin
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Lilla J Bakos
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Federica Marone
- Swiss Light Source, Paul Scherrer Institut, Photon Science Department, Forschungsstrasse 111, CH-5232 Villigen, Switzerland
| | - Bert J Wisse
- Department of Anatomy & Embryology, Leiden University Medical Center, The Netherlands
| | - Marco C de Ruiter
- Department of Anatomy & Embryology, Leiden University Medical Center, The Netherlands
| | - Shixiong Cheng
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Luthfi Nurhidayat
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Martina G Vijver
- Institute of Environmental Sciences, Leiden University (CML), Van Steenis Building, Einsteinweg 2, 2333 CC Leiden, The Netherlands
| | - Michael K Richardson
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| |
Collapse
|
6
|
Rao KS, Kloppenburg JE, Marquis T, Solomon L, McElroy-Yaggy KL, Spees JL. CTGF-D4 Amplifies LRP6 Signaling to Promote Grafts of Adult Epicardial-derived Cells That Improve Cardiac Function After Myocardial Infarction. Stem Cells 2022; 40:204-214. [PMID: 35257185 PMCID: PMC9199845 DOI: 10.1093/stmcls/sxab016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 11/24/2020] [Indexed: 01/26/2023]
Abstract
Transplantation of stem/progenitor cells holds promise for cardiac regeneration in patients with myocardial infarction (MI). Currently, however, low cell survival and engraftment after transplantation present a major barrier to many forms of cell therapy. One issue is that ligands, receptors, and signaling pathways that promote graft success remain poorly understood. Here, we prospectively isolate uncommitted epicardial cells from the adult heart surface by CD104 (β-4 integrin) and demonstrate that C-terminal peptide from connective tissue growth factor (CTGF-D4), when combined with insulin, effectively primes epicardial-derived cells (EPDC) for cardiac engraftment after MI. Similar to native epicardial derivatives that arise from epicardial EMT at the heart surface, the grafted cells migrated into injured myocardial tissue in a rat model of MI with reperfusion. By echocardiography, at 1 month after MI, we observed significant improvement in cardiac function for animals that received epicardial cells primed with CTGF-D4/insulin compared with those that received vehicle-primed (control) cells. In the presence of insulin, CTGF-D4 treatment significantly increased the phosphorylation of Wnt co-receptor LRP6 on EPDC. Competitive engraftment assays and neutralizing/blocking studies showed that LRP6 was required for EPDC engraftment after transplantation. Our results identify LRP6 as a key target for increasing EPDC engraftment after MI and suggest amplification of LRP6 signaling with CTGF-D4/insulin, or by other means, may provide an effective approach for achieving successful cellular grafts in regenerative medicine.
Collapse
Affiliation(s)
- Krithika S Rao
- Department of Medicine, Stem Cell Core, University of Vermont, Colchester, VT 05446, USA
- Cardiovascular Research Institute, University of Vermont, Colchester, VT 05446, USA
| | - Jessica E Kloppenburg
- Department of Medicine, Stem Cell Core, University of Vermont, Colchester, VT 05446, USA
| | - Taylor Marquis
- Department of Medicine, Stem Cell Core, University of Vermont, Colchester, VT 05446, USA
| | - Laura Solomon
- Department of Medicine, Stem Cell Core, University of Vermont, Colchester, VT 05446, USA
| | - Keara L McElroy-Yaggy
- Department of Medicine, Stem Cell Core, University of Vermont, Colchester, VT 05446, USA
- Cardiovascular Research Institute, University of Vermont, Colchester, VT 05446, USA
| | - Jeffrey L Spees
- Department of Medicine, Stem Cell Core, University of Vermont, Colchester, VT 05446, USA
- Cardiovascular Research Institute, University of Vermont, Colchester, VT 05446, USA
| |
Collapse
|
7
|
Hikspoors JPJM, Kruepunga N, Mommen GMC, Köhler SE, Anderson RH, Lamers WH. A pictorial account of the human embryonic heart between 3.5 and 8 weeks of development. Commun Biol 2022; 5:226. [PMID: 35277594 PMCID: PMC8917235 DOI: 10.1038/s42003-022-03153-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/09/2022] [Indexed: 12/28/2022] Open
Abstract
Heart development is topographically complex and requires visualization to understand its progression. No comprehensive 3-dimensional primer of human cardiac development is currently available. We prepared detailed reconstructions of 12 hearts between 3.5 and 8 weeks post fertilization, using Amira® 3D-reconstruction and Cinema4D®-remodeling software. The models were visualized as calibrated interactive 3D-PDFs. We describe the developmental appearance and subsequent remodeling of 70 different structures incrementally, using sequential segmental analysis. Pictorial timelines of structures highlight age-dependent events, while graphs visualize growth and spiraling of the wall of the heart tube. The basic cardiac layout is established between 3.5 and 4.5 weeks. Septation at the venous pole is completed at 6 weeks. Between 5.5 and 6.5 weeks, as the outflow tract becomes incorporated in the ventricles, the spiraling course of its subaortic and subpulmonary channels is transferred to the intrapericardial arterial trunks. The remodeling of the interventricular foramen is complete at 7 weeks.
Collapse
Affiliation(s)
- Jill P J M Hikspoors
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.
| | - Nutmethee Kruepunga
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Greet M C Mommen
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - S Eleonore Köhler
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Robert H Anderson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Wouter H Lamers
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Maleszewski JJ, Lai CK, Nair V, Veinot JP. Anatomic considerations and examination of cardiovascular specimens (excluding devices). Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
9
|
Dissecting the Complexity of Early Heart Progenitor Cells. J Cardiovasc Dev Dis 2021; 9:jcdd9010005. [PMID: 35050215 PMCID: PMC8779398 DOI: 10.3390/jcdd9010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 12/23/2022] Open
Abstract
Early heart development depends on the coordinated participation of heterogeneous cell sources. As pioneer work from Adriana C. Gittenberger-de Groot demonstrated, characterizing these distinct cell sources helps us to understand congenital heart defects. Despite decades of research on the segregation of lineages that form the primitive heart tube, we are far from understanding its full complexity. Currently, single-cell approaches are providing an unprecedented level of detail on cellular heterogeneity, offering new opportunities to decipher its functional role. In this review, we will focus on three key aspects of early heart morphogenesis: First, the segregation of myocardial and endocardial lineages, which yields an early lineage diversification in cardiac development; second, the signaling cues driving differentiation in these progenitor cells; and third, the transcriptional heterogeneity of cardiomyocyte progenitors of the primitive heart tube. Finally, we discuss how single-cell transcriptomics and epigenomics, together with live imaging and functional analyses, will likely transform the way we delve into the complexity of cardiac development and its links with congenital defects.
Collapse
|
10
|
Napiwocki B, Stempien A, Lang D, Kruepke R, Kim G, Zhang J, Eckhardt L, Glukhov A, Kamp T, Crone W. Micropattern platform promotes extracellular matrix remodeling by human PSC-derived cardiac fibroblasts and enhances contractility of co-cultured cardiomyocytes. Physiol Rep 2021; 9:e15045. [PMID: 34617673 PMCID: PMC8496154 DOI: 10.14814/phy2.15045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 02/02/2023] Open
Abstract
In native heart tissue, cardiac fibroblasts provide the structural framework of extracellular matrix (ECM) while also influencing the electrical and mechanical properties of cardiomyocytes. Recent advances in the field of stem cell differentiation have led to the availability of human pluripotent stem cell-derived cardiac fibroblasts (iPSC-CFs) in addition to cardiomyocytes (iPSC-CMs). Here we use a novel 2D in vitro micropatterned platform that provides control over ECM geometry and substrate stiffness. When cultured alone on soft micropatterned substrates, iPSC-CFs are confined to the micropatterned features and remodel the ECM into anisotropic fibers. Similar remodeling and ECM production occurs when cultured with iPSC-CMs in a co-culture model. In addition to modifications in the ECM, our results show that iPSC-CFs influence iPSC-CM function with accelerated Ca2+ transient rise-up time and greater contractile strains in the co-culture conditions compared to when iPSC-CMs are cultured alone. These combined observations highlight the important role cardiac fibroblasts play in vivo and the need for co-culture models like the one presented here to provide more representative in vitro cardiac constructs.
Collapse
Affiliation(s)
- B.N. Napiwocki
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Institute for DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - A. Stempien
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Institute for DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - D. Lang
- Department of MedicineDivision of Cardiovascular MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - R.A. Kruepke
- Engineering Mechanics ProgramUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - G. Kim
- Department of MedicineDivision of Cardiovascular MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - J. Zhang
- Department of MedicineDivision of Cardiovascular MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - L.L. Eckhardt
- Department of MedicineDivision of Cardiovascular MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - A.V. Glukhov
- Department of MedicineDivision of Cardiovascular MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - T.J. Kamp
- Department of MedicineDivision of Cardiovascular MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Cell and Regenerative BiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - W.C. Crone
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Institute for DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Engineering Mechanics ProgramUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Engineering PhysicsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
11
|
|
12
|
Wang YL, Yu SN, Shen HR, Wang HJ, Wu XP, Wang QL, Zhou B, Tan YZ. Thymosin β4 released from functionalized self-assembling peptide activates epicardium and enhances repair of infarcted myocardium. Theranostics 2021; 11:4262-4280. [PMID: 33754060 PMCID: PMC7977468 DOI: 10.7150/thno.52309] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022] Open
Abstract
The epicardium plays an important role in cardiomyogenesis during development, while it becomes quiescent in adult heart during homeostasis. This study investigates the efficiency of thymosin β4 (Tβ4) release with RPRHQGVM conjugated to the C-terminus of RADA16-I (RADA-RPR), the functionalized self-assembling peptide (SAP), to activate the epicardium and repairing the infarcted myocardium. Methods: The functionalized SAP was constituted with self-assembling motif, Tβ4-binding site, and cell adhesive ligand. Myocardial infarction (MI) models of the transgenic mice were established by ligation of the left anterior descending coronary artery. At one week after intramyocardial injection of Tβ4-conjugated SAP, the activation of the epicardium was assessed. At four weeks after implantation, the migration and differentiation of epicardium-derived cells (EPDCs) as well as angiogenesis, lymphangiogenesis and myocardial regeneration were examined. Results: We found that the designer RADA-RPR bound Tβ4 and adhered to EPDCs and that Tβ4 released from the functionalized SAP could effectively activate the epicardium and induce EPDCs to differentiate towards cardiovascular cells as well as lymphatic endothelial cells. Moreover, SAP-released Tβ4 (SAP-Tβ4) promoted proliferation of cardiomyocytes. Furthermore, angiogenesis, lymphangiogenesis and myocardial regeneration were enhanced in the MI models at 4 weeks after delivery of SAP-Tβ4 along with attenuation of adverse myocardial remodeling and significantly improved cardiac function. Conclusions: These results demonstrate that sustained release of Tβ4 from the functionalized SAP can activate the epicardium and effectively enhance the repair of infarcted myocardium. We believe the delivery of SAP-Tβ4 may be a promising strategy for MI therapy.
Collapse
Affiliation(s)
- Yong-li Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai 200032, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Shu-na Yu
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai 200032, China
| | - Hao-ran Shen
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai 200032, China
| | - Hai-jie Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai 200032, China
| | - Xue-ping Wu
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai 200032, China
| | - Qiang-li Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai 200032, China
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bin Zhou
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu-zhen Tan
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai 200032, China
| |
Collapse
|
13
|
Wu X, Reboll MR, Korf-Klingebiel M, Wollert KC. Angiogenesis after acute myocardial infarction. Cardiovasc Res 2020; 117:1257-1273. [PMID: 33063086 DOI: 10.1093/cvr/cvaa287] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/09/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Acute myocardial infarction (MI) inflicts massive injury to the coronary microcirculation leading to vascular disintegration and capillary rarefication in the infarct region. Tissue repair after MI involves a robust angiogenic response that commences in the infarct border zone and extends into the necrotic infarct core. Technological advances in several areas have provided novel mechanistic understanding of postinfarction angiogenesis and how it may be targeted to improve heart function after MI. Cell lineage tracing studies indicate that new capillary structures arise by sprouting angiogenesis from pre-existing endothelial cells (ECs) in the infarct border zone with no meaningful contribution from non-EC sources. Single-cell RNA sequencing shows that ECs in infarcted hearts may be grouped into clusters with distinct gene expression signatures, likely reflecting functionally distinct cell populations. EC-specific multicolour lineage tracing reveals that EC subsets clonally expand after MI. Expanding EC clones may arise from tissue-resident ECs with stem cell characteristics that have been identified in multiple organs including the heart. Tissue repair after MI involves interactions among multiple cell types which occur, to a large extent, through secreted proteins and their cognate receptors. While we are only beginning to understand the full complexity of this intercellular communication, macrophage and fibroblast populations have emerged as major drivers of the angiogenic response after MI. Animal data support the view that the endogenous angiogenic response after MI can be boosted to reduce scarring and adverse left ventricular remodelling. The improved mechanistic understanding of infarct angiogenesis therefore creates multiple therapeutic opportunities. During preclinical development, all proangiogenic strategies should be tested in animal models that replicate both cardiovascular risk factor(s) and the pharmacotherapy typically prescribed to patients with acute MI. Considering that the majority of patients nowadays do well after MI, clinical translation will require careful selection of patients in need of proangiogenic therapies.
Collapse
Affiliation(s)
- Xuekun Wu
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Marc R Reboll
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Mortimer Korf-Klingebiel
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Kai C Wollert
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| |
Collapse
|
14
|
Transforming Growth Factor Beta3 is Required for Cardiovascular Development. J Cardiovasc Dev Dis 2020; 7:jcdd7020019. [PMID: 32456345 PMCID: PMC7344558 DOI: 10.3390/jcdd7020019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor beta3 (TGFB3) gene mutations in patients of arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD1) and Loeys-Dietz syndrome-5 (LDS5)/Rienhoff syndrome are associated with cardiomyopathy, cardiac arrhythmia, cardiac fibrosis, cleft palate, aortic aneurysms, and valvular heart disease. Although the developing heart of embryos express Tgfb3, its overarching role remains unclear in cardiovascular development and disease. We used histological, immunohistochemical, and molecular analyses of Tgfb3-/- fetuses and compared them to wildtype littermate controls. The cardiovascular phenotypes were diverse with approximately two thirds of the Tgfb3-/- fetuses having one or more cardiovascular malformations, including abnormal ventricular myocardium (particularly of the right ventricle), outflow tract septal and alignment defects, abnormal aortic and pulmonary trunk walls, and thickening of semilunar and/or atrioventricular valves. Ventricular septal defects (VSD) including the perimembranous VSDs were observed in Tgfb3-/- fetuses with myocardial defects often accompanied by the muscular type VSD. In vitro studies using TGFβ3-deficient fibroblasts in 3-D collagen lattice formation assays indicated that TGFβ3 was required for collagen matrix reorganization. Biochemical studies indicated the 'paradoxically' increased activation of canonical (SMAD-dependent) and noncanonical (MAP kinase-dependent) pathways. TGFβ3 is required for cardiovascular development to maintain a balance of canonical and noncanonical TGFβ signaling pathways.
Collapse
|
15
|
Ge Y, Smits AM, van Munsteren JC, Gittenberger-de Groot AC, Poelmann RE, van Brakel TJ, Schalij MJ, Goumans MJ, DeRuiter MC, Jongbloed MRM. Human epicardium-derived cells reinforce cardiac sympathetic innervation. J Mol Cell Cardiol 2020; 143:26-37. [PMID: 32277975 DOI: 10.1016/j.yjmcc.2020.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 11/29/2022]
Abstract
RATIONALE After cardiac damage, excessive neurite outgrowth (sympathetic hyperinnervation) can occur, which is related to ventricular arrhythmias/sudden cardiac death. Post-damage reactivation of epicardium causes epicardium-derived cells (EPDCs) to acquire a mesenchymal character, contributing to cardiac regeneration. Whether EPDCs also contribute to cardiac re/hyperinnervation, is unknown. AIM To investigate whether mesenchymal EPDCs influence cardiac sympathetic innervation. METHODS AND RESULTS Sympathetic ganglia were co-cultured with mesenchymal EPDCs and/or myocardium, and neurite outgrowth and sprouting density were assessed. Results showed a significant increase in neurite density and directional (i.e. towards myocardium) outgrowth when ganglia were co-cultured with a combination of EPDCs and myocardium, as compared to cultures with EPDCs or myocardium alone. In absence of myocardium, this outgrowth was not directional. Neurite differentiation of PC12 cells in conditioned medium confirmed these results via a paracrine effect, in accordance with expression of neurotrophic factors in myocardial explants co-cultured with EPDCs. Of interest, EPDCs increased the expression of nerve growth factor (NGF) in cultured, but not in fresh myocardium, possibly due to an "ischemic state" of cultured myocardium, supported by TUNEL and Hif1α expression. Cardiac tissues after myocardial infarction showed robust NGF expression in the infarcted, but not remote area. CONCLUSION Neurite outgrowth and density increases significantly in the presence of EPDCs by a paracrine effect, indicating a new role for EPDCs in the occurrence of sympathetic re/hyperinnervation after cardiac damage.
Collapse
Affiliation(s)
- Yang Ge
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2333, ZC, Leiden, the Netherlands; Department of Cardiology and Thoracic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333, ZC, Leiden, the Netherlands.
| | - Anke M Smits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333, ZC, Leiden, the Netherlands
| | - J Conny van Munsteren
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2333, ZC, Leiden, the Netherlands
| | - Adriana C Gittenberger-de Groot
- Department of Cardiology and Thoracic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333, ZC, Leiden, the Netherlands
| | - Robert E Poelmann
- Department of Cardiology and Thoracic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333, ZC, Leiden, the Netherlands
| | - Thomas J van Brakel
- Department of Cardiology and Thoracic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333, ZC, Leiden, the Netherlands
| | - Martin J Schalij
- Department of Cardiology and Thoracic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333, ZC, Leiden, the Netherlands
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333, ZC, Leiden, the Netherlands
| | - Marco C DeRuiter
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2333, ZC, Leiden, the Netherlands
| | - Monique R M Jongbloed
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2333, ZC, Leiden, the Netherlands; Department of Cardiology and Thoracic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333, ZC, Leiden, the Netherlands.
| |
Collapse
|
16
|
The Development of the Ascending Aortic Wall in Tricuspid and Bicuspid Aortic Valve: A Process from Maturation to Degeneration. J Clin Med 2020; 9:jcm9040908. [PMID: 32225051 PMCID: PMC7230962 DOI: 10.3390/jcm9040908] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/14/2020] [Accepted: 03/24/2020] [Indexed: 01/24/2023] Open
Abstract
Background: Patients with a bicuspid aortic valve (BAV) have an increased risk for aortic dilation and dissection. In this study, we provide a histological stratification of the developing aorta in the tricuspid aortic valve (TAV) and the BAV populations as a reference for future studies on aortopathy and related syndromes. Methods: Non-dilated TAV and BAV ascending aortic wall samples were collected, including 60 TAV (embryonic–70 years) and 32 BAV specimens (fetal–72 years, categorized in eight age groups. Results: In TAV, intimal development starts in the neonatal phase. After birth, the thickness of the medial layer increases significantly by increase of elastic lamellae up to and including the “young child” phase stabilizing afterwards. The BAV shows already prenatal intimal thickening becoming significantly thinner after birth subsequently stabilizing. In BAV, increase in elastic lamellae is seen between the young child and the adolescent phases, stabilizing afterwards. Conclusions: Vascular development in TAV is described in three phases: maturation, stabilization, and degeneration. For BAV, the development can be described in two phases: maturation (already prenatally) and degeneration. After birth, the development of the aorta is characterized by degeneration, leading to weakening of the ascending aortic wall and increasing the risk of aortopathy.
Collapse
|
17
|
Lioux G, Liu X, Temiño S, Oxendine M, Ayala E, Ortega S, Kelly RG, Oliver G, Torres M. A Second Heart Field-Derived Vasculogenic Niche Contributes to Cardiac Lymphatics. Dev Cell 2020; 52:350-363.e6. [PMID: 31928974 DOI: 10.1016/j.devcel.2019.12.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/09/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
The mammalian heart contains multiple cell types that appear progressively during embryonic development. Advance in determining cardiac lineage diversification has often been limited by the unreliability of genetic tracers. Here we combine clonal analysis, genetic lineage tracing, tissue transplantation, and mutant characterization to investigate the lineage relationships between epicardium, arterial mesothelial cells (AMCs), and the coronary vasculature. We report a contribution of the second heart field (SHF) to a vasculogenic niche composed of AMCs and sub-mesothelial cells at the base of the pulmonary artery. Sub-mesothelial cells from this niche differentiate into lymphatic endothelial cells and, in close association with AMC-derived cells, contribute to and are essential for the development of ventral cardiac lymphatics. In addition, regionalized epicardial/mesothelial retinoic acid signaling regulates lymphangiogenesis, contributing to the niche properties. These results uncover a SHF vasculogenic contribution to coronary lymphatic development through a local niche at the base of the great arteries.
Collapse
Affiliation(s)
- Ghislaine Lioux
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid 28029, Spain
| | - Xiaolei Liu
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - Susana Temiño
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid 28029, Spain
| | - Michael Oxendine
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - Estefanía Ayala
- Mouse Genome Editing Core Unit, National Cancer Research Center (CNIO), CNIO, Madrid 28029, Spain
| | - Sagrario Ortega
- Mouse Genome Editing Core Unit, National Cancer Research Center (CNIO), CNIO, Madrid 28029, Spain
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France
| | - Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - Miguel Torres
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid 28029, Spain.
| |
Collapse
|
18
|
Engineer A, Lim YJ, Lu X, Kim MY, Norozi K, Feng Q. Sapropterin reduces coronary artery malformation in offspring of pregestational diabetes mice. Nitric Oxide 2020; 94:9-18. [PMID: 31600600 DOI: 10.1016/j.niox.2019.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/22/2019] [Accepted: 10/03/2019] [Indexed: 11/24/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) and oxidative stress are critical to embryonic coronary artery development. Maternal diabetes increases oxidative stress and reduces eNOS activity in the fetal heart. Sapropterin (Kuvan®) is an orally active, synthetic form of tetrahydrobiopterin (BH4) and a co-factor for eNOS with antioxidant properties. The aim of the present study was to examine the effects of sapropterin on fetal coronary artery development during pregestational diabetes in mice. Diabetes was induced by streptozotocin to adult female C57BL/6 mice. Sapropterin (10 mg/kg/day) was orally administered to pregnant mice from E0.5 to E18.5. Fetal hearts were collected at E18.5 for coronary artery morphological analysis. Sapropterin treatment to diabetic dams reduced the incidence of coronary artery malformation in offspring from 50.0% to 20.6%. Decreases in coronary artery luminal diameter, volume and abundance in fetal hearts from diabetic mothers, were prevented by sapropterin treatment. Maternal diabetes reduced epicardial epithelial-to-mesenchymal transition (EMT) and expression of transcription and growth factors critical to coronary artery development including hypoxia-inducible factor 1a (Hif1a), Snail1, Slug, β-catenin, retinaldehyde dehydrogenase 2 (Aldh1a2), basic fibroblast growth factor (bFGF) and vascular endothelial group factor receptor 2 (Vegfr2) in E12.5 hearts. Additionally, eNOS phosphorylation was lower while oxidative stress was higher in E12.5 hearts from maternal diabetes. Notably, these abnormalities were all restored to normal levels after sapropterin treatment. In conclusion, sapropterin treatment increases eNOS activity, lowers oxidative stress and reduces coronary artery malformation in offspring of pregestational diabetes. Sapropterin may have therapeutic potential in preventing coronary artery malformation in maternal diabetes.
Collapse
Affiliation(s)
- Anish Engineer
- Department of Physiology and Pharmacology, London, Ontario, Canada
| | - Yong Jin Lim
- Department of Physiology and Pharmacology, London, Ontario, Canada
| | - Xiangru Lu
- Department of Physiology and Pharmacology, London, Ontario, Canada
| | - Mella Y Kim
- Department of Physiology and Pharmacology, London, Ontario, Canada
| | - Kambiz Norozi
- Children's Health Research Institute, London, Ontario, Canada; Department of Paediatrics, Western University, London, Ontario, Canada; Department of Paediatric Cardiology and Intensive Care Medicine, Medical School Hannover, Germany; Department of Paediatric Cardiology and Intensive Care Medicine, University of Goettingen, Germany
| | - Qingping Feng
- Department of Physiology and Pharmacology, London, Ontario, Canada; Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
19
|
Bax NAM, Duim SN, Kruithof BPT, Smits AM, Bouten CVC, Goumans MJ. In vivo and in vitro Approaches Reveal Novel Insight Into the Ability of Epicardium-Derived Cells to Create Their Own Extracellular Environment. Front Cardiovasc Med 2019; 6:81. [PMID: 31275946 PMCID: PMC6594358 DOI: 10.3389/fcvm.2019.00081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Human epicardium-derived cells (hEPDCs) transplanted in the NOD-SCID mouse heart after myocardial infarction (MI) are known to improve cardiac function, most likely orchestrated by paracrine mechanisms that limit adverse remodeling. It is not yet known, however, if hEPDCs contribute to preservation of cardiac function via the secretion of matrix proteins and/or matrix proteases to reduce scar formation. This study describes the ability of hEPDCs to produce human collagen type I after transplantation into the infarct border zone, thereby creating their own extracellular environment. As the in vivo environment is too complex to investigate the mechanisms involved, we use an in vitro set-up, mimicking biophysical and biochemical cues from the myocardial tissue to unravel hEPDC-induced matrix remodeling. The in vivo contribution of hEPDCs to the cardiac extracellular matrix (ECM) was assessed in a historical dataset of the NOD-SCID murine model of experimentally induced MI and cell transplantation. Analysis showed that within 48 h after transplantation, hEPDCs produce human collagen type I. The build-up of the human collagen microenvironment was reversed within 6 weeks. To understand the hEPDCs response to the pathologic cardiac microenvironment, we studied the influence of cyclic straining and/or transforming growth beta (TGFβ) signaling in vitro. We revealed that 48 h of cyclic straining induced collagen type I production via the TGFβ/ALK5 signaling pathway. The in vitro approach enables further unraveling of the hEPDCs ability to secrete matrix proteins and matrix proteases and the potential to create and remodel the cardiac matrix in response to injury.
Collapse
Affiliation(s)
- Noortje A M Bax
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Sjoerd N Duim
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Boudewijn P T Kruithof
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Anke M Smits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Marie José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
20
|
Poelmann RE, Gittenberger-de Groot AC. Development and evolution of the metazoan heart. Dev Dyn 2019; 248:634-656. [PMID: 31063648 PMCID: PMC6767493 DOI: 10.1002/dvdy.45] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
The mechanisms of the evolution and development of the heart in metazoans are highlighted, starting with the evolutionary origin of the contractile cell, supposedly the precursor of cardiomyocytes. The last eukaryotic common ancestor is likely a combination of several cellular organisms containing their specific metabolic pathways and genetic signaling networks. During evolution, these tool kits diversified. Shared parts of these conserved tool kits act in the development and functioning of pumping hearts and open or closed circulations in such diverse species as arthropods, mollusks, and chordates. The genetic tool kits became more complex by gene duplications, addition of epigenetic modifications, influence of environmental factors, incorporation of viral genomes, cardiac changes necessitated by air‐breathing, and many others. We evaluate mechanisms involved in mollusks in the formation of three separate hearts and in arthropods in the formation of a tubular heart. A tubular heart is also present in embryonic stages of chordates, providing the septated four‐chambered heart, in birds and mammals passing through stages with first and second heart fields. The four‐chambered heart permits the formation of high‐pressure systemic and low‐pressure pulmonary circulation in birds and mammals, allowing for high metabolic rates and maintenance of body temperature. Crocodiles also have a (nearly) separated circulation, but their resting temperature conforms with the environment. We argue that endothermic ancestors lost the capacity to elevate their body temperature during evolution, resulting in ectothermic modern crocodilians. Finally, a clinically relevant paragraph reviews the occurrence of congenital cardiac malformations in humans as derailments of signaling pathways during embryonic development. The cardiac regulatory toolkit contains many factors including epigenetic, genetic, viral, hemodynamic, and environmental factors, but also transcriptional activators, repressors, duplicated genes, redundancies and dose‐dependancies. Numerous toolkits regulate mechanisms including cell‐cell interactions, EMT, mitosis patterns, cell migration and differentiation and left/right sidedness involved in the development of endocardial cushions, looping, septum complexes, pharyngeal arch arteries, chamber and valve formation and conduction system. Evolutionary development of the yolk sac circulation likely preceded the advent of endothermy in amniotes. Parallel evolutionary traits regulate the development of contractile pumps in various taxa often in conjunction with the gut, lungs and excretory organs.
Collapse
Affiliation(s)
- Robert E Poelmann
- Institute of Biology, Department of Animal Sciences and Health, Leiden University, Leiden, The Netherlands.,Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
21
|
Vilches-Moure JG. Embryonic Chicken ( Gallus gallus domesticus) as a Model of Cardiac Biology and Development. Comp Med 2019; 69:184-203. [PMID: 31182184 PMCID: PMC6591676 DOI: 10.30802/aalas-cm-18-000061] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/06/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease remains one of the top contributors to morbidity and mortality in the United States. Increasing evidence suggests that many processes, pathways, and programs observed during development and organogenesis are recapitulated in adults in the face of disease. Therefore, a heightened understanding of cardiac development and organogenesis will help increase our understanding of developmental defects and cardiovascular diseases in adults. Chicks have long served as a model system in which to study developmental problems. Detailed descriptions of morphogenesis, low cost, accessibility, ease of manipulation, and the optimization of genetic engineering techniques have made chicks a robust model for studying development and make it a powerful platform for cardiovascular research. This review summarizes the cardiac developmental milestones of embryonic chickens, practical considerations when working with chicken embryos, and techniques available for use in chicks (including tissue chimeras, genetic manipulations, and live imaging). In addition, this article highlights examples that accentuate the utility of the embryonic chicken as model system in which to study cardiac development, particularly epicardial development, and that underscore the importance of how studying development informs our understanding of disease.
Collapse
Affiliation(s)
- José G Vilches-Moure
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California,
| |
Collapse
|
22
|
Perdios C, Parnall M, Pang KL, Loughna S. Altered haemodynamics causes aberrations in the epicardium. J Anat 2019; 234:800-814. [PMID: 30882904 PMCID: PMC6539700 DOI: 10.1111/joa.12977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2019] [Indexed: 02/04/2023] Open
Abstract
During embryo development, the heart is the first functioning organ. Although quiescent in the adult, the epicardium is essential during development to form a normal four‐chambered heart. Epicardial‐derived cells contribute to the heart as it develops with fibroblasts and vascular smooth muscle cells. Previous studies have shown that a heartbeat is required for epicardium formation, but no study to our knowledge has shown the effects of haemodynamic changes on the epicardium. Since the aetiologies of many congenital heart defects are unknown, we suggest that an alteration in the heart's haemodynamics might provide an explanatory basis for some of them. To change the heart's haemodynamics, outflow tract (OFT) banding using a double overhang knot was performed on HH21 chick embryos, with harvesting at different developmental stages. The epicardium of the heart was phenotypically and functionally characterised using a range of techniques. Upon alteration of haemodynamics, the epicardium exhibited abnormal morphology at HH29, even though migration of epicardial cells along the surface of the heart was found to be normal between HH24 and HH28. The abnormal epicardial phenotype was exacerbated at HH35 with severe changes in the structure of the extracellular matrix (ECM). A number of genes tied to ECM production were also differentially expressed in HH29 OFT‐banded hearts, including DDR2 and collagen XII. At HH35, the differential expression of these genes was even greater with additional downregulation of collagen I and TCF21. In this study, the epicardium was found to be severely impacted by altered haemodynamics upon OFT banding. The increased volume of the epicardium at HH29, upon OFT‐banding, and the expression changes of ECM markers were the first indicative signs of aberrations in epicardial architecture; by HH35, the phenotype had progressed. The decrease in epicardial thickness at HH35 suggests an increase in tension, with a force acting perpendicular to the surface of the epicardium. Although the developing epicardium and the blood flowing through the heart are separated by the endocardium and myocardium, the data presented here demonstrate that altering the blood flow affects the structure and molecular expression of the epicardial layer. Due to the intrinsic role the epicardium in cardiogenesis, defects in epicardial formation could have a role in the formation of a wide range of congenital heart defects.
Collapse
Affiliation(s)
- Chrysostomos Perdios
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| | - Matthew Parnall
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| | - Kar Lai Pang
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| | - Siobhan Loughna
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| |
Collapse
|
23
|
Poelmann RE, Gittenberger-de Groot AC. Hemodynamics in Cardiac Development. J Cardiovasc Dev Dis 2018; 5:jcdd5040054. [PMID: 30404214 PMCID: PMC6306789 DOI: 10.3390/jcdd5040054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/03/2018] [Accepted: 11/04/2018] [Indexed: 12/14/2022] Open
Abstract
The beating heart is subject to intrinsic mechanical factors, exerted by contraction of the myocardium (stretch and strain) and fluid forces of the enclosed blood (wall shear stress). The earliest contractions of the heart occur already in the 10-somite stage in the tubular as yet unsegmented heart. With development, the looping heart becomes asymmetric providing varying diameters and curvatures resulting in unequal flow profiles. These flow profiles exert various wall shear stresses and as a consequence different expression patterns of shear responsive genes. In this paper we investigate the morphological alterations of the heart after changing the blood flow by ligation of the right vitelline vein in a model chicken embryo and analyze the extended expression in the endocardial cushions of the shear responsive gene Tgfbeta receptor III. A major phenomenon is the diminished endocardial-mesenchymal transition resulting in hypoplastic (even absence of) atrioventricular and outflow tract endocardial cushions, which might be lethal in early phases. The surviving embryos exhibit several cardiac malformations including ventricular septal defects and malformed semilunar valves related to abnormal development of the aortopulmonary septal complex and the enclosed neural crest cells. We discuss the results in the light of the interactions between several shear stress responsive signaling pathways including an extended review of the involved Vegf, Notch, Pdgf, Klf2, eNos, Endothelin and Tgfβ/Bmp/Smad networks.
Collapse
Affiliation(s)
- Robert E Poelmann
- Department of Animal Sciences and Health, Institute of Biology, Sylvius Laboratory, University of Leiden, Sylviusweg 72, 2333BE Leiden, The Netherlands.
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 20, 2300RC Leiden, The Netherlands.
| | | |
Collapse
|
24
|
Yasmeen S, Liao X, Khan FU, Ihsan AU, Li X, Li C, Chen D, Yu F, Wang Z, Sembatya KR, Mikrani R, Zhou X. A novel approach to devise the therapy for ventricular fibrillation by epicardial delivery of lidocaine using active hydraulic ventricular attaching support system: An experimental study in rats. J Biomed Mater Res B Appl Biomater 2018; 107:1722-1731. [PMID: 30367819 DOI: 10.1002/jbm.b.34265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 09/10/2018] [Accepted: 09/23/2018] [Indexed: 12/29/2022]
Abstract
Active hydraulic ventricular attaching support system (ASD) placed around the heart is not only a novel, nontransplant surgical device used for epicardial administration of drugs like lidocaine, but also a promising treatment option for ventricular fibrillation (VF) and arrhythmias. We hypothesize that lidocaine in 5 mg/kg dose released by ASD significantly improves the VF in the rat model. Sprague-Dawley (SD) rats were selected and were divided into four groups, intravenous injection (IV), epicardial infusion (EI), ASD, and control. ASD group was further divided into four subgroups for different lidocaine doses (i) ASD+A group (10 mg/kg), (ii) ASD+B group (5 mg/kg), (iii) ASD+C group (1 mg/kg), and (iv) ASD+D group (0.1 mg/kg). VF was induced with calcium chloride injection and was confirmed by electrocardiogram (ECG) in all the groups. VF was treated with different doses of lidocaine using different modes of administration. Data were analyzed using the SPSS 19.0 Chi-square tests and one-way analysis of variance (ANOVA). The Kaplan-Meier curve for OS was compared to the Logrank test based on the survival time. P < 0.05 was considered as statistically significant. ASD + B group (5 mg/kg) showed significantly reduced sgroup. The time of first sinus rhythm recovered (15.96 ± 21.77 min) and ▵T-SOD in plasma (-42.02 ± 26.99 U/mL) was significantly different than that of control, IV, and EI groups. ▵T-SOD in plasma for all ASD-treated groups was smaller than the control and IV groups. This study proves that ASD with 5 mg/kg lidocaine dose appears as a promising therapeutic platform for treating VF in rats. Furthermore, ASD may also have potential for treating VF or other cardiovascular disease with different therapeutic agents. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1722-1731, 2019.
Collapse
Affiliation(s)
- Sufia Yasmeen
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, China
| | - Xiaoqian Liao
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, China
| | - Farhan Ullah Khan
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, China.,Shanghai Jiao Tong University, School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Awais Ullah Ihsan
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, China
| | - Xue Li
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, China
| | - Cunyu Li
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, China
| | - Dingding Chen
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, China
| | - Feng Yu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, China
| | - Zhijie Wang
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Kiganda Raymond Sembatya
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, China
| | - Reyaj Mikrani
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, China
| | - Xiaohui Zhou
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, China.,Department of Surgery, Nanjing Shuiximen Hospital, Nanjing, Jiangsu Province, 210017, China.,Department of Surgery, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu Province, 210017, China
| |
Collapse
|
25
|
Peterson JC, Chughtai M, Wisse LJ, Gittenberger-de Groot AC, Feng Q, Goumans MJTH, VanMunsteren JC, Jongbloed MRM, DeRuiter MC. Bicuspid aortic valve formation: Nos3 mutation leads to abnormal lineage patterning of neural crest cells and the second heart field. Dis Model Mech 2018; 11:dmm.034637. [PMID: 30242109 PMCID: PMC6215433 DOI: 10.1242/dmm.034637] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022] Open
Abstract
The bicuspid aortic valve (BAV), a valve with two instead of three aortic leaflets, belongs to the most prevalent congenital heart diseases in the world, occurring in 0.5-2% of the general population. We aimed to understand how changes in early cellular contributions result in BAV formation and impact cardiovascular outflow tract development. Detailed 3D reconstructions, immunohistochemistry and morphometrics determined that, during valvulogenesis, the non-coronary leaflet separates from the parietal outflow tract cushion instead of originating from an intercalated cushion. Nos3-/- mice develop a BAV without a raphe as a result of incomplete separation of the parietal outflow tract cushion into the right and non-coronary leaflet. Genetic lineage tracing of endothelial, second heart field and neural crest cells revealed altered deposition of neural crest cells and second heart field cells within the parietal outflow tract cushion of Nos3-/- embryos. The abnormal cell lineage distributions also affected the positioning of the aortic and pulmonary valves at the orifice level. The results demonstrate that the development of the right and non-coronary leaflets are closely related. A small deviation in the distribution of neural crest and second heart field populations affects normal valve formation and results in the predominant right-non-type BAV in Nos3-/- mice.
Collapse
Affiliation(s)
- Joshua C Peterson
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Mary Chughtai
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Lambertus J Wisse
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | - Qingping Feng
- Dept. Physiology and Pharmacology, Schulich Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Marie-José T H Goumans
- Dept. Molecular Cell Biology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - J Conny VanMunsteren
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Monique R M Jongbloed
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands.,Dept. Cardiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Marco C DeRuiter
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
26
|
Vicente Steijn R, Sedmera D, Blom NA, Jongbloed M, Kvasilova A, Nanka O. Apoptosis and epicardial contributions act as complementary factors in remodeling of the atrioventricular canal myocardium and atrioventricular conduction patterns in the embryonic chick heart. Dev Dyn 2018; 247:1033-1042. [PMID: 30152577 DOI: 10.1002/dvdy.24642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/26/2018] [Accepted: 05/31/2018] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND During heart development, it has been hypothesized that apoptosis of atrioventricular canal myocardium and replacement by fibrous tissue derived from the epicardium are imperative to develop a mature atrioventricular conduction. To test this, apoptosis was blocked using an established caspase inhibitor and epicardial growth was delayed using the experimental epicardial inhibition model, both in chick embryonic hearts. RESULTS Chicken embryonic hearts were either treated with the peptide caspase inhibitor zVAD-fmk by intrapericardial injection in ovo (ED4) or underwent epicardial inhibition (ED2.5). Spontaneously beating embryonic hearts isolated (ED7-ED8) were then stained with voltage-sensitive dye Di-4-ANEPPS and imaged at 0.5-1 kHz. Apoptotic cells were quantified (ED5-ED7) by whole-mount LysoTracker Red and anti-active caspase 3 staining. zVAD-treated hearts showed a significantly increased proportion of immature (base to apex) activation patterns at ED8, including ventricular activation originating from the right atrioventricular junction, a pattern never observed in control hearts. zVAD-treated hearts showed decreased numbers of apoptotic cells in the atrioventricular canal myocardium at ED7. Hearts with delayed epicardial outgrowth showed also increased immature activation patterns at ED7.5 and ED8.5. However, the ventricular activation always originated from the left atrioventricular junction. Histological examination showed no changes in apoptosis rates, but a diminished presence of atrioventricular sulcus tissue compared with controls. CONCLUSIONS Apoptosis in the atrioventricular canal myocardium and controlled replacement of this myocardium by epicardially derived HCN4-/Trop1- sulcus tissue are essential determinants of mature ventricular activation pattern. Disruption can lead to persistence of accessory atrioventricular connections, forming a morphological substrate for ventricular pre-excitation. Developmental Dynamics 247:1033-1042, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rebecca Vicente Steijn
- Department of Anatomy & Embryology, Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Nico A Blom
- Department of Pediatric Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Monique Jongbloed
- Department of Anatomy & Embryology, Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alena Kvasilova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ondrej Nanka
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
27
|
Koenraadt WMC, Bartelings MM, Gittenberger-de Groot AC, Bökenkamp R, DeRuiter MC, Schalij MJ, Jongbloed MRM. Pulmonary Valve Morphology in Patients with Bicuspid Aortic Valves. Pediatr Cardiol 2018; 39:690-694. [PMID: 29340729 PMCID: PMC5895682 DOI: 10.1007/s00246-018-1807-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/03/2018] [Indexed: 12/02/2022]
Abstract
The aortic and pulmonary valve share a common developmental origin from the embryonic arterial trunk. Bicuspid aortic valve is the most common congenital anomaly and can occur isolated as well as in association with other congenital heart disease (CHD). Data on pulmonary valve morphology in these cases are scarce. In this study, we aimed to determine pulmonary valve morphology in hearts with BAV associated with CHD. In 83 post-mortem heart specimens with BAV and associated CHD, pulmonary valve morphology was studied and related to BAV morphology. In 14/83 (17%) hearts, the pulmonary valve was affected, bicuspid in 8/83 (10%), dome-shaped in 3/83 (4%) and atretic in 3/83 (4%). In specimens with a bicuspid pulmonary valve, 5/8 (63%) had a strictly bicuspid aortic valve (without raphe), 2/3 hearts (67%) with dome-shaped pulmonary valves and 2/3 hearts (67%) with atretic pulmonary valves had BAV without raphe. Six out of eight (75%) specimens with a bicuspid pulmonary valve had a perimembranous ventricular septal defect (VSD). 4/8 (50%) specimens with a bicuspid pulmonary valve were associated with chromosomal abnormalities: 3 (38%) had trisomy 18 and 1 (13%) had trisomy 13. In BAV with associated CHD, abnormal pulmonary valve morphology was observed in 17% of the hearts. The majority of hearts with abnormal pulmonary valve morphology had a Type B bicuspid aortic valve (without raphe). Bilateral semilunar valvular disease is associated with Type B BAVs and in many cases related to chromosomal abnormalities. As this study was performed in post-mortem specimens with high frequency of associated CHD, caution is warranted with application of these results to the general BAV population.
Collapse
Affiliation(s)
- Wilke M C Koenraadt
- Department of Cardiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Margot M Bartelings
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Adriana C Gittenberger-de Groot
- Department of Cardiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Regina Bökenkamp
- Department of Paediatric Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marco C DeRuiter
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin J Schalij
- Department of Cardiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Monique R M Jongbloed
- Department of Cardiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
28
|
Ridge LA, Mitchell K, Al-Anbaki A, Shaikh Qureshi WM, Stephen LA, Tenin G, Lu Y, Lupu IE, Clowes C, Robertson A, Barnes E, Wright JA, Keavney B, Ehler E, Lovell SC, Kadler KE, Hentges KE. Non-muscle myosin IIB (Myh10) is required for epicardial function and coronary vessel formation during mammalian development. PLoS Genet 2017; 13:e1007068. [PMID: 29084269 PMCID: PMC5697871 DOI: 10.1371/journal.pgen.1007068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/21/2017] [Accepted: 10/11/2017] [Indexed: 01/01/2023] Open
Abstract
The coronary vasculature is an essential vessel network providing the blood supply to the heart. Disruptions in coronary blood flow contribute to cardiac disease, a major cause of premature death worldwide. The generation of treatments for cardiovascular disease will be aided by a deeper understanding of the developmental processes that underpin coronary vessel formation. From an ENU mutagenesis screen, we have isolated a mouse mutant displaying embryonic hydrocephalus and cardiac defects (EHC). Positional cloning and candidate gene analysis revealed that the EHC phenotype results from a point mutation in a splice donor site of the Myh10 gene, which encodes NMHC IIB. Complementation testing confirmed that the Myh10 mutation causes the EHC phenotype. Characterisation of the EHC cardiac defects revealed abnormalities in myocardial development, consistent with observations from previously generated NMHC IIB null mouse lines. Analysis of the EHC mutant hearts also identified defects in the formation of the coronary vasculature. We attribute the coronary vessel abnormalities to defective epicardial cell function, as the EHC epicardium displays an abnormal cell morphology, reduced capacity to undergo epithelial-mesenchymal transition (EMT), and impaired migration of epicardial-derived cells (EPDCs) into the myocardium. Our studies on the EHC mutant demonstrate a requirement for NMHC IIB in epicardial function and coronary vessel formation, highlighting the importance of this protein in cardiac development and ultimately, embryonic survival.
Collapse
Affiliation(s)
- Liam A. Ridge
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Karen Mitchell
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Ali Al-Anbaki
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Wasay Mohiuddin Shaikh Qureshi
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Louise A. Stephen
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Gennadiy Tenin
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Yinhui Lu
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Irina-Elena Lupu
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Christopher Clowes
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Abigail Robertson
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Emma Barnes
- Syngenta Ltd, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Jayne A. Wright
- Syngenta Ltd, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Bernard Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- Manchester Heart Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Elisabeth Ehler
- The Randall Division of Cell and Molecular Biophysics and the Cardiovascular Division, Kings College London, London, United Kingdom
| | - Simon C. Lovell
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Karl E. Kadler
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Kathryn E. Hentges
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
Xu F, Liu Y, Shi L, Cai H, Liu W, Hu Y, Li Y, Yuan W. RGS3 inhibits TGF-β1/Smad signalling in adventitial fibroblasts. Cell Biochem Funct 2017; 35:334-338. [PMID: 28845525 DOI: 10.1002/cbf.3280] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/18/2017] [Accepted: 07/03/2017] [Indexed: 12/27/2022]
Abstract
Recent evidence suggests that adventitial fibroblasts (AFs) are crucially implicated in atherosclerosis. However, the mechanisms by which AFs are dysfunctional and contribute to atherosclerosis remain unclear. This study aimed to investigate the role of regulator of G-protein signalling 3 (RGS3) in the regulation of AFs using apoE knockout mouse as the model. Pathological changes in aortic arteries of apoE knockout mice fed with hyperlipid diet were examined by Movat staining. The expression of RGS3, α-SMA, TGF-β1, Smad2, and Smad3 in the adventitia was detected by immunohistochemistry. Adventitial fibroblasts were isolated from aortic arteries of apoE knockout mice and infected with RGS3 overexpression lentivirus or empty lentivirus. The expression of RGS3, α-SMA, TGF-β1, Smad2, and Smad3 in AFs was detected by real-time polymerase chain reaction and Western blot analysis. We found that hyperlipidic diet caused significant aortic intima thickening and atherosclerotic plaques in 15-week-old apoE knockout mice. Compared to wild-type mice, RGS3 expression was lower while α-SMA, TGF-β1, Smad2, and Smad3 expression was higher in the adventitia of apoE knockout mice. In addition, lentivirus mediated overexpression of RGS3 caused decreased expression of α-SMA, TGF-β1, Smad2, and Smad3 in AFs derived from apoE(-/-) mice. In conclusion, these results suggest that RGS3 may provide protection against pathological changes of AFs and the development of atherosclerosis by inhibiting TGF-β1/Smad signalling. RGS3 may be a potential therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Fang Xu
- Department of Pathophysiology, Binzhou Medical University, Yantai, China
| | - Ying Liu
- Affiliated Hospital, Binzhou Medical University, Binzhou, China
| | - Lei Shi
- Department of Pathophysiology, Binzhou Medical University, Yantai, China
| | - Hongjing Cai
- Department of Pathophysiology, Binzhou Medical University, Yantai, China
| | - Wei Liu
- Department of Pathophysiology, Binzhou Medical University, Yantai, China
| | - Yejia Hu
- Department of Pathophysiology, Binzhou Medical University, Yantai, China
| | - Yuling Li
- Department of Pathophysiology, Binzhou Medical University, Yantai, China
| | - Wendan Yuan
- College of Basic Medicine, Binzhou Medical University, Yantai, China
| |
Collapse
|
30
|
Belair DG, Wolf CJ, Wood C, Ren H, Grindstaff R, Padgett W, Swank A, MacMillan D, Fisher A, Winnik W, Abbott BD. Engineering human cell spheroids to model embryonic tissue fusion in vitro. PLoS One 2017; 12:e0184155. [PMID: 28898253 PMCID: PMC5595299 DOI: 10.1371/journal.pone.0184155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/19/2017] [Indexed: 01/06/2023] Open
Abstract
Epithelial-mesenchymal interactions drive embryonic fusion events during development, and perturbations of these interactions can result in birth defects. Cleft palate and neural tube defects can result from genetic defects or environmental exposures during development, yet very little is known about the effect of chemical exposures on fusion events during human development because of a lack of relevant and robust human in vitro assays of developmental fusion behavior. Given the etiology and prevalence of cleft palate and the relatively simple architecture and composition of the embryonic palate, we sought to develop a three-dimensional culture system that mimics the embryonic palate and could be used to study fusion behavior in vitro using human cells. We engineered size-controlled human Wharton’s Jelly stromal cell (HWJSC) spheroids and established that 7 days of culture in osteogenesis differentiation medium was sufficient to promote an osteogenic phenotype consistent with embryonic palatal mesenchyme. HWJSC spheroids supported the attachment of human epidermal keratinocyte progenitor cells (HPEKp) on the outer spheroid surface likely through deposition of collagens I and IV, fibronectin, and laminin by mesenchymal spheroids. HWJSC spheroids coated in HPEKp cells exhibited fusion behavior in culture, as indicated by the removal of epithelial cells from the seams between spheroids, that was dependent on epidermal growth factor signaling and fibroblast growth factor signaling in agreement with palate fusion literature. The method described here may broadly apply to the generation of three-dimensional epithelial-mesenchymal co-cultures to study developmental fusion events in a format that is amenable to predictive toxicology applications.
Collapse
Affiliation(s)
- David G. Belair
- Toxicity Assessment Division, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Cynthia J. Wolf
- Toxicity Assessment Division, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Carmen Wood
- Toxicity Assessment Division, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Hongzu Ren
- Research Cores Unit, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Rachel Grindstaff
- Research Cores Unit, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - William Padgett
- Research Cores Unit, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Adam Swank
- Research Cores Unit, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Denise MacMillan
- Research Cores Unit, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Anna Fisher
- Research Cores Unit, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Witold Winnik
- Research Cores Unit, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Barbara D. Abbott
- Toxicity Assessment Division, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
31
|
van der Linde IHM, Hiemstra YL, Bökenkamp R, van Mil AM, Breuning MH, Ruivenkamp C, Ten Broeke SW, Veldkamp RF, van Waning JI, van Slegtenhorst MA, van Spaendonck-Zwarts KY, Lekanne Deprez RH, Herkert JC, Boven L, van der Zwaag PA, Jongbloed JDH, Bootsma M, Barge-Schaapveld DQCM. A Dutch MYH7 founder mutation, p.(Asn1918Lys), is associated with early onset cardiomyopathy and congenital heart defects. Neth Heart J 2017; 25:675-681. [PMID: 28864942 PMCID: PMC5691818 DOI: 10.1007/s12471-017-1037-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023] Open
Abstract
Background Mutations in the myosin heavy chain 7 (MYH7) gene commonly cause cardiomyopathy but are less frequently associated with congenital heart defects. Methods In this study, we describe a mutation in the MYH7 gene, c. 5754C > G; p. (Asn1918Lys), present in 15 probands and 65 family members. Results Of the 80 carriers (age range 0–88 years), 46 (57.5%) had cardiomyopathy (mainly dilated cardiomyopathy (DCM)) and seven (8.8%) had a congenital heart defect. Childhood onset of cardiomyopathy was present in almost 10% of carriers. However, in only a slight majority (53.7%) was the left ventricular ejection fraction reduced and almost no arrhythmias or conduction disorders were noted. Moreover, only one carrier required heart transplantation and nine (11.3%) an implantable cardioverter defibrillator. In addition, the standardised mortality ratio for MYH7 carriers was not significantly increased. Whole exome sequencing in several cases with paediatric onset of DCM and one with isolated congenital heart defects did not reveal additional known disease-causing variants. Haplotype analysis suggests that the MYH7 variant is a founder mutation, and is therefore the first Dutch founder mutation identified in the MYH7 gene. The mutation appears to have originated in the western region of the province of South Holland between 500 and 900 years ago. Conclusion Clinically, the p. (Asn1918Lys) mutation is associated with congenital heart defects and/or cardiomyopathy at young age but with a relatively benign course. Electronic supplementary material The online version of this article (10.1007/s12471-017-1037-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- I H M van der Linde
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Y L Hiemstra
- Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - R Bökenkamp
- Department of Paediatric Cardiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - A M van Mil
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - M H Breuning
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - C Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - S W Ten Broeke
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - R F Veldkamp
- Department of Cardiology, Haaglanden Medical Centre, The Hague, The Netherlands
| | - J I van Waning
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - M A van Slegtenhorst
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | - R H Lekanne Deprez
- Department of Clinical Genetics, Academic Medical Centre, Amsterdam, The Netherlands
| | - J C Herkert
- University Medical Centre Groningen, Department of Genetics, University of Groningen, Groningen, The Netherlands
| | - L Boven
- University Medical Centre Groningen, Department of Genetics, University of Groningen, Groningen, The Netherlands
| | - P A van der Zwaag
- University Medical Centre Groningen, Department of Genetics, University of Groningen, Groningen, The Netherlands
| | - J D H Jongbloed
- University Medical Centre Groningen, Department of Genetics, University of Groningen, Groningen, The Netherlands
| | - M Bootsma
- Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands
| | | |
Collapse
|
32
|
Poelmann RE, Gittenberger-de Groot AC, Biermans MWM, Dolfing AI, Jagessar A, van Hattum S, Hoogenboom A, Wisse LJ, Vicente-Steijn R, de Bakker MAG, Vonk FJ, Hirasawa T, Kuratani S, Richardson MK. Outflow tract septation and the aortic arch system in reptiles: lessons for understanding the mammalian heart. EvoDevo 2017; 8:9. [PMID: 28491275 PMCID: PMC5424407 DOI: 10.1186/s13227-017-0072-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/03/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cardiac outflow tract patterning and cell contribution are studied using an evo-devo approach to reveal insight into the development of aorto-pulmonary septation. RESULTS We studied embryonic stages of reptile hearts (lizard, turtle and crocodile) and compared these to avian and mammalian development. Immunohistochemistry allowed us to indicate where the essential cell components in the outflow tract and aortic sac were deployed, more specifically endocardial, neural crest and second heart field cells. The neural crest-derived aorto-pulmonary septum separates the pulmonary trunk from both aortae in reptiles, presenting with a left visceral and a right systemic aorta arising from the unseptated ventricle. Second heart field-derived cells function as flow dividers between both aortae and between the two pulmonary arteries. In birds, the left visceral aorta disappears early in development, while the right systemic aorta persists. This leads to a fusion of the aorto-pulmonary septum and the aortic flow divider (second heart field population) forming an avian aorto-pulmonary septal complex. In mammals, there is also a second heart field-derived aortic flow divider, albeit at a more distal site, while the aorto-pulmonary septum separates the aortic trunk from the pulmonary trunk. As in birds there is fusion with second heart field-derived cells albeit from the pulmonary flow divider as the right 6th pharyngeal arch artery disappears, resulting in a mammalian aorto-pulmonary septal complex. In crocodiles, birds and mammals, the main septal and parietal endocardial cushions receive neural crest cells that are functional in fusion and myocardialization of the outflow tract septum. Longer-lasting septation in crocodiles demonstrates a heterochrony in development. In other reptiles with no indication of incursion of neural crest cells, there is either no myocardialized outflow tract septum (lizard) or it is vestigial (turtle). Crocodiles are unique in bearing a central shunt, the foramen of Panizza, between the roots of both aortae. Finally, the soft-shell turtle investigated here exhibits a spongy histology of the developing carotid arteries supposedly related to regulation of blood flow during pharyngeal excretion in this species. CONCLUSIONS This is the first time that is shown that an interplay of second heart field-derived flow dividers with a neural crest-derived cell population is a variable but common, denominator across all species studied for vascular patterning and outflow tract septation. The observed differences in normal development of reptiles may have impact on the understanding of development of human congenital outflow tract malformations.
Collapse
Affiliation(s)
- Robert E Poelmann
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands.,Animal Sciences and Health, Sylvius Laboratories, University of Leiden, Sylviusweg 72, Leiden, The Netherlands
| | | | - Marcel W M Biermans
- Animal Sciences and Health, Sylvius Laboratories, University of Leiden, Sylviusweg 72, Leiden, The Netherlands
| | - Anne I Dolfing
- Animal Sciences and Health, Sylvius Laboratories, University of Leiden, Sylviusweg 72, Leiden, The Netherlands
| | - Armand Jagessar
- Animal Sciences and Health, Sylvius Laboratories, University of Leiden, Sylviusweg 72, Leiden, The Netherlands
| | - Sam van Hattum
- Animal Sciences and Health, Sylvius Laboratories, University of Leiden, Sylviusweg 72, Leiden, The Netherlands
| | - Amanda Hoogenboom
- Animal Sciences and Health, Sylvius Laboratories, University of Leiden, Sylviusweg 72, Leiden, The Netherlands
| | - Lambertus J Wisse
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, Leiden, The Netherlands
| | - Rebecca Vicente-Steijn
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands.,Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, Leiden, The Netherlands
| | - Merijn A G de Bakker
- Animal Sciences and Health, Sylvius Laboratories, University of Leiden, Sylviusweg 72, Leiden, The Netherlands
| | - Freek J Vonk
- Animal Sciences and Health, Sylvius Laboratories, University of Leiden, Sylviusweg 72, Leiden, The Netherlands.,Naturalis Biodiversity Center, Darwinweg 2, Leiden, The Netherlands
| | - Tatsuya Hirasawa
- Laboratory for Evolutionary Morphology, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Michael K Richardson
- Animal Sciences and Health, Sylvius Laboratories, University of Leiden, Sylviusweg 72, Leiden, The Netherlands
| |
Collapse
|
33
|
Dueñas A, Aranega AE, Franco D. More than Just a Simple Cardiac Envelope; Cellular Contributions of the Epicardium. Front Cell Dev Biol 2017; 5:44. [PMID: 28507986 PMCID: PMC5410615 DOI: 10.3389/fcell.2017.00044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/10/2017] [Indexed: 12/12/2022] Open
Abstract
The adult pumping heart is formed by distinct tissue layers. From inside to outside, the heart is composed by an internal endothelial layer, dubbed the endocardium, a thick myocardial component which supports the pumping capacity of the heart and exteriorly covered by a thin mesothelial layer named the epicardium. Cardiac insults such as coronary artery obstruction lead to ischemia and thus to an irreversible damage of the myocardial layer, provoking in many cases heart failure and death. Thus, searching for new pathways to regenerate the myocardium is an urgent biomedical need. Interestingly, the capacity of heart regeneration is present in other species, ranging from fishes to neonatal mammals. In this context, several lines of evidences demonstrated a key regulatory role for the epicardial layer. In this manuscript, we provide a state-of-the-art review on the developmental process leading to the formation of the epicardium, the distinct pathways controlling epicardial precursor cell specification and determination and current evidences on the regenerative potential of the epicardium to heal the injured heart.
Collapse
Affiliation(s)
- Angel Dueñas
- Cardiac and Skeletal Muscle Research Group, Department of Experimental Biology, University of JaénJaén, Spain
| | - Amelia E Aranega
- Cardiac and Skeletal Muscle Research Group, Department of Experimental Biology, University of JaénJaén, Spain
| | - Diego Franco
- Cardiac and Skeletal Muscle Research Group, Department of Experimental Biology, University of JaénJaén, Spain
| |
Collapse
|
34
|
Gittenberger-de Groot AC, Hoppenbrouwers T, Miquerol L, Kosaka Y, Poelmann RE, Wisse LJ, Yost HJ, Jongbloed MRM, Deruiter MC, Brunelli L. 14-3-3epsilon controls multiple developmental processes in the mouse heart. Dev Dyn 2016; 245:1107-1123. [PMID: 27580238 PMCID: PMC5065397 DOI: 10.1002/dvdy.24440] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 08/10/2016] [Accepted: 08/16/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND 14-3-3ε plays an important role in the maturation of the compact ventricular myocardium by modulating the cardiomyocyte cell cycle via p27kip1 . However, additional cardiac defects are possible given the ubiquitous expression pattern of this protein. RESULTS Germ line deletion of 14-3-3ε led to malalignment of both the outflow tract (OFT) and atrioventricular (AV) cushions, with resulting tricuspid stenosis and atresia, mitral valve abnormalities, and perimembranous ventricular septal defects (VSDs). We confirmed myocardial non-compaction and detected a spongy septum with muscular VSDs and blebbing of the epicardium. These defects were associated with abnormal patterning of p27kip1 expression in the subendocardial and possibly the epicardial cell populations. In addition to abnormal pharyngeal arch artery patterning, we found deep endocardial recesses and paucity of intramyocardial coronary vasculature as a result of defective coronary plexus remodeling. CONCLUSIONS The malalignment of both endocardial cushions provides a new explanation for tricuspid and mitral valve defects, while myocardial non-compaction provides the basis for the abnormal coronary vasculature patterning. These abnormalities might arise from p27kip1 dysregulation and a resulting defect in epithelial-to-mesenchymal transformation. These data suggest that 14-3-3ε, in addition to left ventricular non-compaction (LVNC), might be linked to different forms of congenital heart disease (CHD). Developmental Dynamics 245:1107-1123, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Adriana C Gittenberger-de Groot
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands.
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Tamara Hoppenbrouwers
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Yasuhiro Kosaka
- Department of Pediatrics (Neonatology), University of Utah School of Medicine, Salt Lake City, Utah
| | | | - Lambertus J Wisse
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - H Joseph Yost
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah
| | - Monique R M Jongbloed
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marco C Deruiter
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Luca Brunelli
- Department of Pediatrics (Neonatology), University of Utah School of Medicine, Salt Lake City, Utah.
| |
Collapse
|
35
|
DeLaughter DM, Clark CR, Christodoulou DC, Seidman CE, Baldwin HS, Seidman JG, Barnett JV. Transcriptional Profiling of Cultured, Embryonic Epicardial Cells Identifies Novel Genes and Signaling Pathways Regulated by TGFβR3 In Vitro. PLoS One 2016; 11:e0159710. [PMID: 27505173 PMCID: PMC4978490 DOI: 10.1371/journal.pone.0159710] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 07/07/2016] [Indexed: 11/23/2022] Open
Abstract
The epicardium plays an important role in coronary vessel formation and Tgfbr3-/- mice exhibit failed coronary vessel development associated with decreased epicardial cell invasion. Immortalized Tgfbr3-/- epicardial cells display the same defects. Tgfbr3+/+ and Tgfbr3-/- cells incubated for 72 hours with VEH or ligands known to promote invasion via TGFβR3 (TGFβ1, TGFβ2, BMP2), for 72 hours were harvested for RNA-seq analysis. We selected for genes >2-fold differentially expressed between Tgfbr3+/+ and Tgfbr3-/- cells when incubated with VEH (604), TGFβ1 (515), TGFβ2 (553), or BMP2 (632). Gene Ontology (GO) analysis of these genes identified dysregulated biological processes consistent with the defects observed in Tgfbr3-/- cells, including those associated with extracellular matrix interaction. GO and Gene Regulatory Network (GRN) analysis identified distinct expression profiles between TGFβ1-TGFβ2 and VEH-BMP2 incubated cells, consistent with the differential response of epicardial cells to these ligands in vitro. Despite the differences observed between Tgfbr3+/+ and Tgfbr3-/- cells after TGFβ and BMP ligand addition, GRNs constructed from these gene lists identified NF-ĸB as a key nodal point for all ligands examined. Tgfbr3-/- cells exhibited decreased expression of genes known to be activated by NF-ĸB signaling. NF-ĸB activity was stimulated in Tgfbr3+/+ epicardial cells after TGFβ2 or BMP2 incubation, while Tgfbr3-/- cells failed to activate NF-ĸB in response to these ligands. Tgfbr3+/+ epicardial cells incubated with an inhibitor of NF-ĸB signaling no longer invaded into a collagen gel in response to TGFβ2 or BMP2. These data suggest that NF-ĸB signaling is dysregulated in Tgfbr3-/- epicardial cells and that NF-ĸB signaling is required for epicardial cell invasion in vitro. Our approach successfully identified a signaling pathway important in epicardial cell behavior downstream of TGFβR3. Overall, the genes and signaling pathways identified through our analysis yield the first comprehensive list of candidate genes whose expression is dependent on TGFβR3 signaling.
Collapse
Affiliation(s)
- Daniel M. DeLaughter
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Cynthia R. Clark
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Danos C. Christodoulou
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christine E. Seidman
- Cardiology Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - H. Scott Baldwin
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville,Tennessee, United States of America
| | - J. G. Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joey V. Barnett
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
36
|
Stöllberger C, Finsterer J. Unmet needs in the cardiologic and neurologic work-up of left ventricular hypertrabeculation/noncompaction. Expert Rev Cardiovasc Ther 2016; 14:1151-60. [DOI: 10.1080/14779072.2016.1215244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
37
|
Ding Z, Temme S, Quast C, Friebe D, Jacoby C, Zanger K, Bidmon HJ, Grapentin C, Schubert R, Flögel U, Schrader J. Epicardium-Derived Cells Formed After Myocardial Injury Display Phagocytic Activity Permitting In Vivo Labeling and Tracking. Stem Cells Transl Med 2016; 5:639-50. [PMID: 27057005 DOI: 10.5966/sctm.2015-0159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/13/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Epicardium-derived cells (EPDCs) cover the heart surface and can function as a source of both progenitor cells and trophic factors for cardiac repair. Currently, EPDCs cannot be conveniently labeled in vivo to permit imaging and cell tracking. EPDCs formed after myocardial infarction (MI) preferentially take up a perfluorocarbon-containing nanoemulsion (PFC-NE; 130 ± 32 nm) injected 3 days after injury, as measured by (19)F-magnetic resonance imaging ((19)F-MRI). Flow cytometry, immune electron microscopy, and green fluorescent protein (GFP)-transgenic rats (only immune cells, but not epicardial cells, are GFP(+)) demonstrated that PFC-containing EPDCs are nonhematopoietic (CD45(-)/CD11b(-)) but stain positive for markers of mesenchymal stem cells such as platelet-derived growth factor receptor α (PDGFR-α) CD73, CD105, and CD90. When rhodamine-coupled PFC-NE was used, we found that ρ(+) vessel-like structures formed within the infarcted myocardium, comprising approximately 10% of all large vessels positive for smooth muscle actin (SM-actin). The epicardial cell layer, positive for Wilms' tumor 1 (WT-1), PDGFR-α, or KI-67, was shown to be well capillarized (293 ± 78 capillaries per mm(2)), including fenestrated endothelium. Freshly isolated EPDCs were positive for WT-1, GATA-4, KI-67, and FLK-1 (75%), PDGFR-α (50%), and SM-actin (28%) and also exhibited a high capacity for nanoparticle and cell debris uptake. This study demonstrates that EPDCs formed after MI display strong endocytic activity to take up i.v.-injected labeled nanoemulsions. This feature permitted in vivo labeling and tracking of EPDCs, demonstrating their role in myo- and vasculogenesis. The newly discovered endocytic activity permits in vivo imaging of EPDCs with (19)F-MRI and may be used for the liposomal delivery of substances to further study their reparative potential. SIGNIFICANCE The present study reports that epicardium-derived cells (EPDCs) formed after myocardial infarction can specifically endocytose nanoparticles in vivo and in vitro. This novel feature permitted in vivo targeting of EPDCs with either a perfluorocarbon-containing or rhodamine-conjugated nanoemulsion to track migration and fate decision of EPDC with (19)F-magnetic resonance imaging and fluorescence microscopy. The liposomal nanoemulsions used in the present study may be useful in the future as a nanomedical device for the delivery of substances to direct cell fate of EPDCs.
Collapse
Affiliation(s)
- Zhaoping Ding
- Department of Molecular Cardiology, Heinrich Heine University, Duesseldorf, Germany
| | - Sebastian Temme
- Department of Molecular Cardiology, Heinrich Heine University, Duesseldorf, Germany
| | - Christine Quast
- Department of Molecular Cardiology, Heinrich Heine University, Duesseldorf, Germany
| | - Daniela Friebe
- Department of Molecular Cardiology, Heinrich Heine University, Duesseldorf, Germany
| | - Christoph Jacoby
- Department of Molecular Cardiology, Heinrich Heine University, Duesseldorf, Germany
| | - Klaus Zanger
- Center of Anatomy and Brain Research, Department of Anatomy I, Heinrich Heine University, Duesseldorf, Germany
| | - Hans-Jürgen Bidmon
- Cécile and Oskar Vogt Institute for Brain Research, Heinrich Heine University, Duesseldorf, Germany
| | - Christoph Grapentin
- Department of Pharmaceutical Technology and Biopharmacy, Albert Ludwig University, Freiburg, Germany
| | - Rolf Schubert
- Department of Pharmaceutical Technology and Biopharmacy, Albert Ludwig University, Freiburg, Germany
| | - Ulrich Flögel
- Department of Molecular Cardiology, Heinrich Heine University, Duesseldorf, Germany
| | - Jürgen Schrader
- Department of Molecular Cardiology, Heinrich Heine University, Duesseldorf, Germany
| |
Collapse
|
38
|
Kelder TP, Vicente-Steijn R, Poelmann RE, Mummery CL, DeRuiter MC, Jongbloed MRM. The avian embryo to study development of the cardiac conduction system. Differentiation 2016; 91:90-103. [PMID: 26856662 DOI: 10.1016/j.diff.2016.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 11/17/2022]
Abstract
The avian embryo has long been a popular model system in developmental biology. The easy accessibility of the embryo makes it particularly suitable for in ovo microsurgery and manipulation. Re-incubation of the embryo allows long-term follow-up of these procedures. The current review focuses on the variety of techniques available to study development of the cardiac conduction system in avian embryos. Based on the large amount of relevant data arising from experiments in avian embryos, we conclude that the avian embryo has and will continue to be a powerful model system to study development in general and the developing cardiac conduction system in particular.
Collapse
Affiliation(s)
- Tim P Kelder
- Anatomy & Embryology, Leiden University Medical Center, The Netherlands
| | - Rebecca Vicente-Steijn
- Anatomy & Embryology, Leiden University Medical Center, The Netherlands; Cardiology, Leiden University Medical Center, The Netherlands; ICIN Netherlands Heart Institute, Utrecht, The Netherlands
| | - Robert E Poelmann
- Cardiology, Leiden University Medical Center, The Netherlands; Integrative Zoology, Institute Biology, University Leiden, The Netherlands
| | | | - Marco C DeRuiter
- Anatomy & Embryology, Leiden University Medical Center, The Netherlands
| | - Monique R M Jongbloed
- Anatomy & Embryology, Leiden University Medical Center, The Netherlands; Cardiology, Leiden University Medical Center, The Netherlands.
| |
Collapse
|
39
|
Rog-Zielinska EA, Norris RA, Kohl P, Markwald R. The Living Scar – Cardiac Fibroblasts and the Injured Heart. Trends Mol Med 2016. [DOI: 10.1016/j.molmed.2015.12.006 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
40
|
Rog-Zielinska EA, Norris RA, Kohl P, Markwald R. The Living Scar – Cardiac Fibroblasts and the Injured Heart. Trends Mol Med 2016. [DOI: 10.1016/j.molmed.2015.12.006 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
41
|
Rog-Zielinska EA, Norris RA, Kohl P, Markwald R. The Living Scar – Cardiac Fibroblasts and the Injured Heart. Trends Mol Med 2016. [DOI: 10.1016/j.molmed.2015.12.006 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
42
|
Morrell NW, Bloch DB, ten Dijke P, Goumans MJTH, Hata A, Smith J, Yu PB, Bloch KD. Targeting BMP signalling in cardiovascular disease and anaemia. Nat Rev Cardiol 2016; 13:106-20. [PMID: 26461965 PMCID: PMC4886232 DOI: 10.1038/nrcardio.2015.156] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bone morphogenetic proteins (BMPs) and their receptors, known to be essential regulators of embryonic patterning and organogenesis, are also critical for the regulation of cardiovascular structure and function. In addition to their contributions to syndromic disorders including heart and vascular development, BMP signalling is increasingly recognized for its influence on endocrine-like functions in postnatal cardiovascular and metabolic homeostasis. In this Review, we discuss several critical and novel aspects of BMP signalling in cardiovascular health and disease, which highlight the cell-specific and context-specific nature of BMP signalling. Based on advancing knowledge of the physiological roles and regulation of BMP signalling, we indicate opportunities for therapeutic intervention in a range of cardiovascular conditions including atherosclerosis and pulmonary arterial hypertension, as well as for anaemia of inflammation. Depending on the context and the repertoire of ligands and receptors involved in specific disease processes, the selective inhibition or enhancement of signalling via particular BMP ligands (such as in atherosclerosis and pulmonary arterial hypertension, respectively) might be beneficial. The development of selective small molecule antagonists of BMP receptors, and the identification of ligands selective for BMP receptor complexes expressed in the vasculature provide the most immediate opportunities for new therapies.
Collapse
Affiliation(s)
- Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Donald B Bloch
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | - Peter ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medicine Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Marie-Jose T H Goumans
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medicine Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, 500 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jim Smith
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Paul B Yu
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Kenneth D Bloch
- Anaesthesia Centre for Critical Care Research, Department of Anaesthesia, Critical Care and Pain Medicine, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
43
|
Rog-Zielinska EA, Norris RA, Kohl P, Markwald R. The Living Scar – Cardiac Fibroblasts and the Injured Heart. Trends Mol Med 2016. [DOI: 10.1016/j.molmed.2015.12.006 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
44
|
Rog-Zielinska EA, Norris RA, Kohl P, Markwald R. The Living Scar – Cardiac Fibroblasts and the Injured Heart. Trends Mol Med 2016. [DOI: 10.1016/j.molmed.2015.12.006 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
45
|
Rog-Zielinska EA, Norris RA, Kohl P, Markwald R. The Living Scar – Cardiac Fibroblasts and the Injured Heart. Trends Mol Med 2016. [DOI: 10.1016/j.molmed.2015.12.006 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
46
|
Rog-Zielinska EA, Norris RA, Kohl P, Markwald R. The Living Scar – Cardiac Fibroblasts and the Injured Heart. Trends Mol Med 2016. [DOI: 10.1016/j.molmed.2015.12.006 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
47
|
Baardman ME, Zwier MV, Wisse LJ, Gittenberger-de Groot AC, Kerstjens-Frederikse WS, Hofstra RMW, Jurdzinski A, Hierck BP, Jongbloed MRM, Berger RMF, Plösch T, DeRuiter MC. Common arterial trunk and ventricular non-compaction in Lrp2 knockout mice indicate a crucial role of LRP2 in cardiac development. Dis Model Mech 2016; 9:413-25. [PMID: 26822476 PMCID: PMC4852499 DOI: 10.1242/dmm.022053] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 01/20/2016] [Indexed: 01/22/2023] Open
Abstract
Lipoprotein-related receptor protein 2 (LRP2) is important for development of the embryonic neural crest and brain in both mice and humans. Although a role in cardiovascular development can be expected, the hearts of Lrp2 knockout (KO) mice have not yet been investigated. We studied the cardiovascular development of Lrp2 KO mice between embryonic day 10.5 (E10.5) and E15.5, applying morphometry and immunohistochemistry, using antibodies against Tfap2α (neural crest cells), Nkx2.5 (second heart field), WT1 (epicardium derived cells), tropomyosin (myocardium) and LRP2. The Lrp2 KO mice display a range of severe cardiovascular abnormalities, including aortic arch anomalies, common arterial trunk (persistent truncus arteriosus) with coronary artery anomalies, ventricular septal defects, overriding of the tricuspid valve and marked thinning of the ventricular myocardium. Both the neural crest cells and second heart field, which are essential for the lengthening and growth of the right ventricular outflow tract, are abnormally positioned in the Lrp2 KO. This explains the absence of the aorto-pulmonary septum, which leads to common arterial trunk and ventricular septal defects. Severe blebbing of the epicardial cells covering the ventricles is seen. Epithelial-mesenchymal transition does occur; however, there are fewer WT1-positive epicardium-derived cells in the ventricular wall as compared to normal, coinciding with the myocardial thinning and deep intertrabecular spaces. LRP2 plays a crucial role in cardiovascular development in mice. This corroborates findings of cardiac anomalies in humans with LRP2 mutations. Future studies should reveal the underlying signaling mechanisms in which LRP2 is involved during cardiogenesis. Summary: This paper sheds a new light on the role of the second heart field and neural crest cells in outflow tract formation in the mouse embryo. Depletion of the LPR2 results in a disturbed contribution pattern and subsequent common arterial trunk.
Collapse
Affiliation(s)
- Maria E Baardman
- Department of Genetics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | - Mathijs V Zwier
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | - Lambertus J Wisse
- Department of Anatomy and Embryology, Leiden University Medical Center, PO-Box 9600, Leiden 2300 RC, The Netherlands
| | | | - Wilhelmina S Kerstjens-Frederikse
- Department of Genetics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus Medical Center Rotterdam, PO-Box 2040, Rotterdam 3000 CA, The Netherlands Neural Development and Gastroenterology Units, UCL Institute of Child Health, London WC1 NEH, UK
| | - Angelika Jurdzinski
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | - Beerend P Hierck
- Department of Anatomy and Embryology, Leiden University Medical Center, PO-Box 9600, Leiden 2300 RC, The Netherlands
| | - Monique R M Jongbloed
- Department of Cardiology and Department of Anatomy and Embryology, Leiden University Medical Center, PO-Box 9600, Leiden 2300 RC, The Netherlands
| | - Rolf M F Berger
- Center for Congenital Heart Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | - Marco C DeRuiter
- Department of Anatomy and Embryology, Leiden University Medical Center, PO-Box 9600, Leiden 2300 RC, The Netherlands
| |
Collapse
|
48
|
Rog-Zielinska EA, Norris RA, Kohl P, Markwald R. The Living Scar--Cardiac Fibroblasts and the Injured Heart. Trends Mol Med 2016; 22:99-114. [PMID: 26776094 DOI: 10.1016/j.molmed.2015.12.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 12/22/2022]
Abstract
Cardiac scars, often dubbed 'dead tissue', are very much alive, with heterocellular activity contributing to the maintenance of structural and mechanical integrity following heart injury. To form a scar, non-myocytes such as fibroblasts are recruited from intra- and extra-cardiac sources. Fibroblasts perform important autocrine and paracrine signaling functions. They also establish mechanical and, as is increasingly evident, electrical junctions with other cells. While fibroblasts were previously thought to act simply as electrical insulators, they may be electrically connected among themselves and, under some circumstances, to other cells including cardiomyocytes. A better understanding of these biophysical interactions will help to target scar structure and function, and will facilitate the development of novel therapies aimed at modifying scar properties for patient benefit.
Collapse
Affiliation(s)
- Eva A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University of Freiburg, Freiburg, Germany; National Heart and Lung Institute, Imperial College London, London, UK
| | - Russell A Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University of Freiburg, Freiburg, Germany; National Heart and Lung Institute, Imperial College London, London, UK.
| | - Roger Markwald
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
49
|
Maleszewski J, Lai C, Veinot J. Anatomic Considerations and Examination of Cardiovascular Specimens (Excluding Devices). Cardiovasc Pathol 2016. [DOI: 10.1016/b978-0-12-420219-1.00001-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
50
|
Yue MS, Plavicki JS, Li XY, Peterson RE, Heideman W. A co-culture assay of embryonic zebrafish hearts to assess migration of epicardial cells in vitro. BMC DEVELOPMENTAL BIOLOGY 2015; 15:50. [PMID: 26715205 PMCID: PMC4696273 DOI: 10.1186/s12861-015-0100-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/22/2015] [Indexed: 11/17/2022]
Abstract
Background The vertebrate heart consists of three cell layers: the innermost endothelium, the contractile myocardium and the outermost epicardium. The epicardium is vital for heart development and function, and forms from epicardial progenitor cells (EPCs), which migrate to the myocardium during early development. Disruptions in EPC migration and epicardium formation result in a number of cardiac malformations, many of which resemble congenital heart diseases in humans. Hence, it is important to understand the mechanisms that influence EPC migration and spreading in the developing heart. In vitro approaches heretofore have been limited to monolayer epicardial cell cultures, which may not fully capture the complex interactions that can occur between epicardial and myocardial cells in vivo. Results Here we describe a novel in vitro co-culture assay for assessing epicardial cell migration using embryonic zebrafish hearts. We isolated donor hearts from embryonic zebrafish carrying an epicardial-specific fluorescent reporter after epicardial cells were present on the heart. These were co-cultured with recipient hearts expressing a myocardial-specific fluorescent reporter, isolated prior to EPC migration. Using this method, we can clearly visualize the movement of epicardial cells from the donor heart onto the myocardium of the recipient heart. We demonstrate the utility of this method by showing that epicardial cell migration is significantly delayed or absent when myocardial cells lack contractility and when myocardial cells are deficient in tbx5 expression. Conclusions We present a method to assess the migration of epicardial cells in an in vitro assay, wherein the migration of epicardial cells from a donor heart onto the myocardium of a recipient heart in co-culture is monitored and scored. The donor and recipient hearts can be independently manipulated, using either genetic tools or pharmacological agents. This allows flexibility in experimental design for determining the role that target genes/signaling pathways in specific cell types may have on epicardial cell migration. Electronic supplementary material The online version of this article (doi:10.1186/s12861-015-0100-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Monica S Yue
- Molecular and Environmental Toxicology Center, University of Wisconsin, 1300 University Avenue, Madison, WI, 53706, USA.
| | - Jessica S Plavicki
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI, 53705, USA.
| | - Xin-yi Li
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China.
| | - Richard E Peterson
- Molecular and Environmental Toxicology Center, University of Wisconsin, 1300 University Avenue, Madison, WI, 53706, USA. .,Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI, 53705, USA.
| | - Warren Heideman
- Molecular and Environmental Toxicology Center, University of Wisconsin, 1300 University Avenue, Madison, WI, 53706, USA. .,Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI, 53705, USA.
| |
Collapse
|