1
|
Hou X, Zhang L, Chen Y, Liu Z, Zhao X, Lu B, Luo Y, Qu X, Musskaya O, Glazov I, Kulak AI, Chen F, Zhao J, Zhou Z, Zheng L. Photothermal switch by gallic acid-calcium grafts synthesized by coordination chemistry for sequential treatment of bone tumor and regeneration. Biomaterials 2025; 312:122724. [PMID: 39106818 DOI: 10.1016/j.biomaterials.2024.122724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/09/2024]
Abstract
The residual bone tumor and defects which is caused by surgical therapy of bone tumor is a major and important problem in clinicals. And the sequential treatment for irradiating residual tumor and repairing bone defects has wildly prospects. In this study, we developed a general modification strategy by gallic acid (GA)-assisted coordination chemistry to prepare black calcium-based materials, which combines the sequential photothermal therapy of bone tumor and bone defects. The GA modification endows the materials remarkable photothermal properties. Under the near-infrared (NIR) irradiation with different power densities, the black GA-modified bone matrix (GBM) did not merely display an excellent performance in eliminating bone tumor with high temperature, but showed a facile effect of the mild-heat stimulation to accelerate bone regeneration. GBM can efficiently regulate the microenvironments of bone regeneration in a spatial-temporal manner, including inflammation/immune response, vascularization and osteogenic differentiation. Meanwhile, the integrin/PI3K/Akt signaling pathway of bone marrow mesenchymal stem cells (BMSCs) was revealed to be involved in the effect of osteogenesis induced by the mild-heat stimulation. The outcome of this study not only provides a serial of new multifunctional biomaterials, but also demonstrates a general strategy for designing novel blacked calcium-based biomaterials with great potential for clinical use.
Collapse
Affiliation(s)
- Xiaodong Hou
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China; Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, China
| | - Lei Zhang
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yixing Chen
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Zhiqing Liu
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xinyu Zhao
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Bingqiang Lu
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yiping Luo
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xinyu Qu
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Olga Musskaya
- Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Surganova Str. 9, 220072, Minsk, Belarus
| | - Ilya Glazov
- Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Surganova Str. 9, 220072, Minsk, Belarus
| | - Anatoly I Kulak
- Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Surganova Str. 9, 220072, Minsk, Belarus
| | - Feng Chen
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Jing Zhao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Zifei Zhou
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Longpo Zheng
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China; Shanghai Trauma Emergency Center, Orthopedic Intelligent Minimally Invasive Diagnosis & Treatment Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
2
|
Zhang S, Qu D, Luo B, Wang L, Li H, Wang H. Regulation of Osteogenic Differentiation of hBMSCs by the Overlay Angles of Bone Lamellae-like Matrices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56801-56814. [PMID: 39389937 DOI: 10.1021/acsami.4c12847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Oriented fibers in bone lamellae are recognized for their contribution to the anisotropic mechanical performance of the cortical bone. While increasing evidence highlights that such oriented fibers also exhibit osteogenic induction to preosteoblasts, little is known about the effect of the overlay angle between lamellae on the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). In this study, bone lamellae-like fibrous matrices composed of aligned core-shell [core: polycaprolactone (PCL)/type I collagen (Col I) + shell: Col I] nanofibers were seeded with human BMSCs (hBMSCs) and then laid over on each other layer-by-layer (L-b-L) at selected angles (0 or 45°) to form three-dimensional (3D) constructs. Upon culture for 7 and 14 days, osteogenic differentiation of hBMSCs and mineralization within the lamellae assembly (LA) were characterized by real-time PCR, Western blot, immunofluorescent staining for osteogenic markers, and alizarin red staining for calcium deposition. Compared to those of random nanofibers (LA-RF) or aligned fibers with the overlay angle of 45° (LA-AF-45), the LA of aligned fibers at a 0° overlay angle (LA-AF-0) exhibited a noticeably higher osteogenic differentiation of hBMSCs, i.e., elevated gene expression of OPN, OCN, and RUNX2 and protein levels of ALP and RUNX2, while promoting mineral deposition as indicated by alizarin red staining and mechanical testing. Further analyses of hBMSCs within LA-AF-0 revealed an increase in both total and phosphorylated integrin β1, which subsequently increased total focal adhesion kinase (FAK), phosphorylated FAK (p-FAK), and phosphorylated extracellular signal kinase ERK1/2 (p-ERK1/2). Inhibition of integrin β1 and ERK1/2 activity effectively reduced the LA-AF-0-induced upregulation of p-FAK and osteogenic markers (OPN, OCN, and RUNX2), confirming the involvement of integrin β1-FAK-ERK1/2 signaling. Altogether, the overlay angle of aligned core-shell nanofiber membranes regulates the osteogenic differentiation of hBMSCs via integrin β1-FAK-ERK1/2 signaling, unveiling the effects of anisotropic fibers on bone tissue formation.
Collapse
Affiliation(s)
- Shuyun Zhang
- Guangdong Police College, Guangzhou 510440, Guangdong, China
- College of Chemistry and Materials Science, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, Guangdong, China
- Semcer Center for Healthcare Innovation, Stevens Institute of Technology, 1 Castle Point on the Hudson, Hoboken, New Jersey 07030, United States
| | - Dengjian Qu
- College of Chemistry and Materials Science, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, Guangdong, China
| | - Bowen Luo
- Department of Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point on the Hudson, Hoboken, New Jersey 07030, United States
- Semcer Center for Healthcare Innovation, Stevens Institute of Technology, 1 Castle Point on the Hudson, Hoboken, New Jersey 07030, United States
| | - Lichen Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point on the Hudson, Hoboken, New Jersey 07030, United States
- Semcer Center for Healthcare Innovation, Stevens Institute of Technology, 1 Castle Point on the Hudson, Hoboken, New Jersey 07030, United States
| | - Hong Li
- College of Chemistry and Materials Science, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, Guangdong, China
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point on the Hudson, Hoboken, New Jersey 07030, United States
- Semcer Center for Healthcare Innovation, Stevens Institute of Technology, 1 Castle Point on the Hudson, Hoboken, New Jersey 07030, United States
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point on the Hudson, Hoboken, New Jersey 07030, United States
| |
Collapse
|
3
|
Zhao L, Liu S, Peng Y, Zhang J. Lamc1 promotes osteogenic differentiation and inhibits adipogenic differentiation of bone marrow-derived mesenchymal stem cells. Sci Rep 2024; 14:19592. [PMID: 39179716 PMCID: PMC11344058 DOI: 10.1038/s41598-024-69629-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) exhibit multi-lineage differentiation potential and robust proliferative capacity. The late stage of differentiation signifies the functional maturation and characterization of specific cell lineages, which is crucial for studying lineage-specific differentiation mechanisms. However, the molecular processes governing late-stage BMSC differentiation remain poorly understood. This study aimed to elucidate the key biological processes involved in late-stage BMSC differentiation. Publicly available transcriptomic data from human BMSCs were analyzed after approximately 14 days of osteogenic, adipogenic, and chondrogenic differentiation. Thirty-one differentially expressed genes (DEGs) associated with differentiation were identified. Pathway enrichment analysis indicated that the DEGs were involved in extracellular matrix (ECM)-receptor interactions, focal adhesion, and glycolipid biosynthesis, a ganglion series process. Subsequently, the target genes were validated using publicly available single-cell RNA-seq data from mouse BMSCs. Lamc1 exhibited predominant distribution in adipocytes and osteoblasts, primarily during the G2/M phase. Tln2 and Hexb were expressed in chondroblasts, osteoblasts, and adipocytes, while St3gal5 was abundantly distributed in stem cells. Cell communication analysis identified two receptors that interact with LAMCI. q-PCR results confirmed the upregulation of Lamc1, Tln2, Hexb, and St3gal5 during osteogenic differentiation and their downregulation during adipogenic differentiation. Knockdown of Lamc1 inhibited adipogenic and osteogenic differentiation. In conclusion, this study identified four genes, Lamc1, Tln2, Hexb, and St3gal5, that may play important roles in the late-stage differentiation of BMSCs. It elucidated their interactions and the pathways they influence, providing a foundation for further research on BMSC differentiation.
Collapse
Affiliation(s)
- Lixia Zhao
- Bioengineering College, Zunyi Medical University, 368 Jinwan Road, Zhuhai, 519090, Guangdong, China
| | - Shuai Liu
- Bioengineering College, Zunyi Medical University, 368 Jinwan Road, Zhuhai, 519090, Guangdong, China
| | - Yanqiu Peng
- Bioengineering College, Zunyi Medical University, 368 Jinwan Road, Zhuhai, 519090, Guangdong, China
| | - Jian Zhang
- Bioengineering College, Zunyi Medical University, 368 Jinwan Road, Zhuhai, 519090, Guangdong, China.
| |
Collapse
|
4
|
Mahmoudi N, Roque M, Paiva Dos Santos B, Oliveira H, Siadous R, Rey S, Garanger E, Lecommandoux S, Catros S, Garbay B, Amédée Vilamitjana J. An Elastin-Derived Composite Matrix for Enhanced Vascularized and Innervated Bone Tissue Reconstruction: From Material Development to Preclinical Evaluation. Adv Healthc Mater 2024; 13:e2303765. [PMID: 38651610 DOI: 10.1002/adhm.202303765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Despite progress in bone tissue engineering, reconstruction of large bone defects remains an important clinical challenge. Here, a biomaterial designed to recruit bone cells, endothelial cells, and neuronal fibers within the same matrix is developed, enabling bone tissue regeneration. The bioactive matrix is based on modified elastin-like polypeptides (ELPs) grafted with laminin-derived adhesion peptides IKVAV and YIGSR, and the SNA15 peptide for retention of hydroxyapatite (HA) particles. The composite matrix shows suitable porosity, interconnectivity, biocompatibility for endothelial cells, and the ability to support neurites outgrowth by sensory neurons. Subcutaneous implantation leads to the formation of osteoid tissue, characterized by the presence of bone cells, vascular networks, and neuronal structures, while minimizing inflammation. Using a rat femoral condyle defect model, longitudinal micro-CT analysis is performed, which demonstrates a significant increase in the volume of mineralized tissue when using the ELP-based matrix compared to empty defects and a commercially available control (Collapat). Furthermore, visible blood vessel networks and nerve fibers are observed within the lesions after a period of two weeks. By incorporating multiple key components that support cell growth, mineralization, and tissue integration, this ELP-based composite matrix provides a holistic and versatile solution to enhance bone tissue regeneration.
Collapse
Affiliation(s)
- Nadia Mahmoudi
- Tissue Bioengineering Laboratory (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France
| | - Micaela Roque
- Tissue Bioengineering Laboratory (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France
| | - Bruno Paiva Dos Santos
- Tissue Bioengineering Laboratory (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France
| | - Hugo Oliveira
- Tissue Bioengineering Laboratory (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France
| | - Robin Siadous
- Tissue Bioengineering Laboratory (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France
| | - Sylvie Rey
- Tissue Bioengineering Laboratory (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France
| | | | | | - Sylvain Catros
- CHU Bordeaux, Dentistry and Oral Health Department, Bordeaux, 33076, France
| | - Bertrand Garbay
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR, Pessac, 5629, France
| | | |
Collapse
|
5
|
Gassner T, Chittilappilly C, Pirich T, Neuditschko B, Hackner K, Lind J, Aksoy O, Graichen U, Klee S, Herzog F, Wiesner C, Errhalt P, Pecherstorfer M, Podar K, Vallet S. Favorable impact of PD1/PD-L1 antagonists on bone remodeling: an exploratory prospective clinical study and ex vivo validation. J Immunother Cancer 2024; 12:e008669. [PMID: 38702145 PMCID: PMC11086513 DOI: 10.1136/jitc-2023-008669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Skeletal morbidity in patients with cancer has a major impact on the quality of life, and preserving bone health while improving outcomes is an important goal of modern antitumor treatment strategies. Despite their widespread use in early disease stages, the effects of immune checkpoint inhibitors (ICIs) on the skeleton are still poorly defined. Here, we initiated a comprehensive investigation of the impact of ICIs on bone health by longitudinal assessment of bone turnover markers in patients with cancer and by validation in a novel bioengineered 3D model of bone remodeling. METHODS An exploratory longitudinal study was conducted to assess serum markers of bone resorption (C-terminal telopeptide, CTX) and formation (procollagen type I N-terminal propeptide, PINP, and osteocalcin, OCN) before each ICI application (programmed cell death 1 (PD1) inhibitor or programmed death-ligand 1 (PD-L1) inhibitor) for 6 months or until disease progression in patients with advanced cancer and no evidence of bone metastases. To validate the in vivo results, we evaluated osteoclast (OC) and osteoblast (OB) differentiation on treatment with ICIs. In addition, their effect on bone remodeling was assessed by immunohistochemistry, confocal microscopy, and proteomics analysis in a dynamic 3D bone model. RESULTS During the first month of treatment, CTX levels decreased sharply but transiently. In contrast, we observed a delayed increase of serum levels of PINP and OCN after 4 months of therapy. In vitro, ICIs impaired the maturation of preosteoclasts by inhibiting STAT3/NFATc1 signaling but not JNK, ERK, and AKT while lacking any direct effect on osteogenesis. However, using our bioengineered 3D bone model, which enables the simultaneous differentiation of OB and OC precursor cells, we confirmed the uncoupling of the OC/OB activity on exposure to ICIs by demonstrating impaired OC maturation along with increased OB differentiation. CONCLUSION Our study indicates that the inhibition of the PD1/PD-L1 signaling axis interferes with bone turnover and may exert a protective effect on bone by indirectly promoting osteogenesis.
Collapse
Affiliation(s)
- Tamara Gassner
- Department of Basic and Translational Oncology and Hematology, Division of Molecular Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Christina Chittilappilly
- Department of Basic and Translational Oncology and Hematology, Division of Molecular Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Theo Pirich
- Department of Basic and Translational Oncology and Hematology, Division of Molecular Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Benjamin Neuditschko
- Institute Krems Bioanalytics, IMC University of Applied Sciences, Krems an der Donau, Austria
| | - Klaus Hackner
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Division of Pneumology, University Hospital Krems, Krems an der Donau, Austria
| | - Judith Lind
- Department of Basic and Translational Oncology and Hematology, Division of Molecular Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Osman Aksoy
- Department of Basic and Translational Oncology and Hematology, Division of Molecular Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Uwe Graichen
- Department of General Health Studies, Division Biostatistics and Data Sciences, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Sascha Klee
- Department of General Health Studies, Division Biostatistics and Data Sciences, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Franz Herzog
- Institute Krems Bioanalytics, IMC University of Applied Sciences, Krems an der Donau, Austria
| | - Christoph Wiesner
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, Krems an der Donau, Austria
| | - Peter Errhalt
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Division of Pneumology, University Hospital Krems, Krems an der Donau, Austria
| | - Martin Pecherstorfer
- Division of Internal Medicine 2, University Hospital Krems, Krems an der Donau, Austria
- Karl Landsteiner Institute of Supportive Cancer Therapy, Karl Landsteiner Gesellschaft, St. Poelten, Austria
| | - Klaus Podar
- Department of Basic and Translational Oncology and Hematology, Division of Molecular Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Division of Internal Medicine 2, University Hospital Krems, Krems an der Donau, Austria
| | - Sonia Vallet
- Department of Basic and Translational Oncology and Hematology, Division of Molecular Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Division of Internal Medicine 2, University Hospital Krems, Krems an der Donau, Austria
- Karl Landsteiner Institute of Supportive Cancer Therapy, Karl Landsteiner Gesellschaft, St. Poelten, Austria
| |
Collapse
|
6
|
Azadi S, Yazdanpanah MA, Afshari A, Alahdad N, Chegeni S, Angaji A, Rezayat SM, Tavakol S. Bioinspired synthetic peptide-based biomaterials regenerate bone through biomimicking of extracellular matrix. J Tissue Eng 2024; 15:20417314241303818. [PMID: 39670180 PMCID: PMC11635874 DOI: 10.1177/20417314241303818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
There have been remarkable advancements in regenerative medicine for bone regeneration, tackling the worldwide health concern of tissue loss. Tissue engineering uses the body's natural capabilities and applies biomaterials and bioactive molecules to replace damaged or lost tissues and restore their functionality. While synthetic ceramics have overcome some challenges associated with allografts and xenografts, they still need essential growth factors and biomolecules. Combining ceramics and bioactive molecules, such as peptides derived from biological motifs of vital proteins, is the most effective approach to achieve optimal bone regeneration. These bioactive peptides induce various cellular processes and modify scaffold properties by mimicking the function of natural osteogenic, angiogenic and antibacterial biomolecules. The present review aims to consolidate the latest and most pertinent information on the advancements in bioactive peptides, including angiogenic, osteogenic, antimicrobial, and self-assembling peptide nanofibers for bone tissue regeneration, elucidating their biological effects and potential clinical implications.
Collapse
Affiliation(s)
- Sareh Azadi
- Department of Medical Biotechnology, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Yazdanpanah
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Ali Afshari
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Niloofar Alahdad
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Solmaz Chegeni
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abdolhamid Angaji
- Department of Medical Biotechnology, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahdi Rezayat
- Department of Medical Nanotechnology, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Research and Development, Tavakol Biomimetic Technologies Company, Tehran, Iran
| |
Collapse
|
7
|
Sun L, Guo S, Xie Y, Yao Y. The characteristics and the multiple functions of integrin β1 in human cancers. J Transl Med 2023; 21:787. [PMID: 37932738 PMCID: PMC10629185 DOI: 10.1186/s12967-023-04696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023] Open
Abstract
Integrins, which consist of two non-covalently linked α and β subunits, play a crucial role in cell-cell adhesion and cell-extracellular matrix (ECM) interactions. Among them, integrin β1 is the most common subunit and has emerged as a key mediator in cancer, influencing various aspects of cancer progression, including cell motility, adhesion, migration, proliferation, differentiation and chemotherapy resistance. However, given the complexity and sometimes contradictory characteristics, targeting integrin β1 for therapeutics has been a challenge. The emerging understanding of the mechanisms regulating by integrin β1 may guide the development of new strategies for anti-cancer therapy. In this review, we summarize the multiple functions of integrin β1 and signaling pathways which underlie the involvement of integrin β1 in several malignant cancers. Our review suggests the possibility of using integrin β1 as a therapeutic target and highlights the need for patient stratification based on expression of different integrin receptors in future clinical studies.
Collapse
Affiliation(s)
- Li Sun
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University, Kunshan, 215300, People's Republic of China
| | - Shuwei Guo
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, People's Republic of China
| | - Yiping Xie
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University, Kunshan, 215300, People's Republic of China
| | - Yongliang Yao
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University, Kunshan, 215300, People's Republic of China.
| |
Collapse
|
8
|
Choi MJ, You TM, Jang YJ. Galectin-3 Plays an Important Role in BMP7-Induced Cementoblastic Differentiation of Human Periodontal Ligament Cells by Interacting with Extracellular Components. Stem Cells Int 2023; 2023:5924286. [PMID: 37396953 PMCID: PMC10313471 DOI: 10.1155/2023/5924286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/01/2023] [Accepted: 06/10/2023] [Indexed: 07/04/2023] Open
Abstract
Human periodontal ligament stem cells (hPDLSCs) contain multipotent postnatal stem cells that differentiate into PDL progenitors, osteoblasts, and cementoblasts. Previously, we obtained cementoblast-like cells from hPDLSCs using bone morphogenetic protein 7 (BMP7) treatment. Differentiation into appropriate progenitor cells requires interactions and changes between stem or progenitor cells and their so-called environment niches, and cell surface markers play an important role. However, cementoblast-specific cell surface markers have not yet been fully studied. Through decoy immunization with intact cementoblasts, we developed a series of monoclonal antibodies against cementoblast-specific membrane/extracellular matrix (ECM) molecules. One of these antibodies, the anti-CM3 antibody, recognized an approximate 30 kDa protein in a mouse cementoblast cell line, and the CM3 antigenic molecule accumulated in the cementum region of human tooth roots. Using mass spectrometric analysis, we found that the antigenic molecules recognized by the anti-CM3 antibody were galectin-3. As cementoblastic differentiation progressed, the expression of galectin-3 increased, and it localized at the cell surface. Inhibition of galectin-3 via siRNA and a specific inhibitor showed the complete blockage of cementoblastic differentiation and mineralization. In contrast, ectopic expression of galectin-3 induced cementoblastic differentiation. Galectin-3 interacted with laminin α2 and BMP7, and these interactions were diminished by galectin-3 inhibitors. These results suggested that galectin-3 participates in binding to the ECM component and trapping BMP7 to induce, in a sustained fashion, the upregulation of cementoblastic differentiation. Finally, galectin-3 could be a potential cementoblast-specific cell surface marker, with functional importance in cell-to-ECM interactions.
Collapse
Affiliation(s)
- Min-Jeong Choi
- Department of Nanobiomedical Science and BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Tae Min You
- Department of Advanced General Dentistry, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| | - Young-Joo Jang
- Department of Nanobiomedical Science and BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Department of Oral Biochemistry, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
9
|
Huang W, Wu X, Xiang S, Qiao M, Li H, Zhu Y, Zhu Z, Zhao Z. Regulatory of miRNAs in tri-lineage differentiation of C3H10T1/2. Stem Cell Res Ther 2022; 13:521. [PMID: 36414991 PMCID: PMC9682817 DOI: 10.1186/s13287-022-03205-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding single-stranded RNA molecules encoded by endogenous genes, which play a vital role in cell generation, metabolism, apoptosis and stem cell differentiation. C3H10T1/2, a mesenchymal cell extracted from mouse embryos, is capable of osteogenic differentiation, adipogenic differentiation and chondrogenic differentiation. Extensive studies have shown that not only miRNAs can directly trigger targeted genes to regulate the tri-lineage differentiation of C3H10T1/2, but it also can indirectly regulate the differentiation by triggering different signaling pathways or various downstream molecules. This paper aims to clarify the regulatory roles of different miRNAs on C3H10T1/2 differentiation, and discussing their balance effect among osteogenic differentiation, adipogenic differentiation and chondrogenic differentiation of C3H10T1/2. We also review the biogenesis of miRNAs, Wnt signaling pathways, MAPK signaling pathways and BMP signaling pathways and provide some specific examples of how these signaling pathways act on C3H10T1/2 tri-lineage differentiation. On this basis, we hope that a deeper understanding of the differentiation and regulation mechanism of miRNAs in C3H10T1/2 can provide a promising therapeutic method for the clinical treatment of bone defects, osteoporosis, osteoarthritis and other diseases.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaoyue Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Shuaixi Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Mingxin Qiao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Hanfei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yujie Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
10
|
Xu F, Zheng Z, Yao M, Zhu F, Shen T, Li J, Zhu C, Yang T, Shao M, Wan Z, Fang C. A regulatory mechanism of a stepwise osteogenesis-mimicking decellularized extracellular matrix on the osteogenic differentiation of bone marrow-derived mesenchymal stem cells. J Mater Chem B 2022; 10:6171-6180. [PMID: 35766339 DOI: 10.1039/d2tb00721e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cell-derived decellularized extracellular matrix (dECM) plays a vital role in controlling cell functions because of its similarity to the in vivo microenvironment. In the process of stem cell differentiation, the composition of the dECM is not constant but is dynamically remolded. However, there is little information regarding the dynamic regulation by the dECM of the osteogenic differentiation of stem cells. Herein, four types of stepwise dECMs (0, 7, 14, and 21 d-ECM) were prepared from bone marrow-derived mesenchymal stem cells (BMSCs) undergoing osteogenic differentiation for 0, 7, 14, and 21 days after decellularization. In vitro experiments were designed to study the regulation of BMSC osteogenesis by dECMs. The results showed that all the dECMs could support the activity and proliferation of BMSCs but had different effects on their osteogenic differentiation. The 14d-ECM promoted the osteogenesis of BMSCs significantly compared with the other dECMs. Proteomic analysis demonstrated that the composition of dECMs changed over time. The 14d ECM had higher amounts of collagen type IV alpha 2 chain (COL4A2) than the other dECMs. Furthermore, COL4A2 was obviously enriched in the activated focal adhesion kinase (FAK)/phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT) signaling pathways. Thus, the 14d-ECM could promote the osteogenic differentiation of BMSCs, which might be related to the high content of COL4A2 in the 14d-ECM by activating the FAK/PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Fei Xu
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China. .,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Ziran Zheng
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China. .,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Mianfeng Yao
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China. .,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Feiya Zhu
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.
| | - Ting Shen
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.
| | - Jiang Li
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China. .,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Chao Zhu
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China. .,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Tianru Yang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.
| | - Mengying Shao
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.
| | - Zicheng Wan
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Changyun Fang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China. .,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Wu H, Yin G, Pu X, Wang J, Liao X, Huang Z. Coordination of Osteoblastogenesis and Osteoclastogenesis by the Bone Marrow Mesenchymal Stem Cell-Derived Extracellular Matrix To Promote Bone Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:2913-2927. [DOI: 10.1021/acsabm.2c00264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Huan Wu
- College of Biomedical Engineering, Sichuan University, No.24, South 1st Section, 1st Ring Road, Chengdu 610064, P. R. China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, No.24, South 1st Section, 1st Ring Road, Chengdu 610064, P. R. China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, No.24, South 1st Section, 1st Ring Road, Chengdu 610064, P. R. China
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, No.24, South 1st Section, 1st Ring Road, Chengdu 610064, P. R. China
| | - Xiaoming Liao
- College of Biomedical Engineering, Sichuan University, No.24, South 1st Section, 1st Ring Road, Chengdu 610064, P. R. China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, No.24, South 1st Section, 1st Ring Road, Chengdu 610064, P. R. China
| |
Collapse
|
12
|
Marconi GD, Fonticoli L, Della Rocca Y, Rajan TS, Piattelli A, Trubiani O, Pizzicannella J, Diomede F. Human Periodontal Ligament Stem Cells Response to Titanium Implant Surface: Extracellular Matrix Deposition. BIOLOGY 2021; 10:931. [PMID: 34571808 PMCID: PMC8470763 DOI: 10.3390/biology10090931] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022]
Abstract
The major challenge for dentistry is to provide the patient an oral rehabilitation to maintain healthy bone conditions in order to reduce the time for loading protocols. Advancement in implant surface design is necessary to favour and promote the osseointegration process. The surface features of titanium dental implant can promote a relevant influence on the morphology and differentiation ability of mesenchymal stem cells, induction of the osteoblastic genes expression and the release of extracellular matrix (ECM) components. The present study aimed at evaluating the in vitro effects of two different dental implants with titanium surfaces, TEST and CTRL, to culture the human periodontal ligament stem cells (hPDLSCs). Expression of ECM components such as Vimentin, Fibronectin, N-cadherin, Laminin, Focal Adhesion Kinase (FAK) and Integrin beta-1 (ITGB1), and the osteogenic related markers, as runt related transcription factor 2 (RUNX2) and alkaline phosphatase (ALP), were investigated. Human PDLSCs cultured on the TEST implant surface demonstrated a better cell adhesion capability as observed by Scanning Electron Microscopy (SEM) and immunofluorescence analysis. Moreover, immunofluorescence and Western blot experiments showed an over expression of Fibronectin, Laminin, N-cadherin and RUNX2 in hPDLSCs seeded on TEST implant surface. The gene expression study by RT-PCR validated the results obtained in protein assays and exhibited the expression of RUNX2, ALP, Vimentin (VIM), Fibronectin (FN1), N-cadherin (CDH2), Laminin (LAMB1), FAK and ITGB1 in hPDLSCs seeded on TEST surface compared to the CTRL dental implant surface. Understanding the mechanisms of ECM components release and its regulation are essential for developing novel strategies in tissue engineering and regenerative medicine. Our results demonstrated that the impact of treated surfaces of titanium dental implants might increase and accelerate the ECM apposition and provide the starting point to initiate the osseointegration process.
Collapse
Affiliation(s)
- Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (G.D.M.); (A.P.)
| | - Luigia Fonticoli
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.); (F.D.)
| | - Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.); (F.D.)
| | | | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (G.D.M.); (A.P.)
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.); (F.D.)
| | | | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.); (F.D.)
| |
Collapse
|
13
|
Tang Y, Luo K, Tan J, Zhou R, Chen Y, Chen C, Rong Z, Deng M, Yu X, Zhang C, Dai Q, Wu W, Xu J, Dong S, Luo F. Laminin alpha 4 promotes bone regeneration by facilitating cell adhesion and vascularization. Acta Biomater 2021; 126:183-198. [PMID: 33711525 DOI: 10.1016/j.actbio.2021.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/17/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022]
Abstract
Selective cell retention (SCR) has been widely used as a bone tissue engineering technique for the real-time fabrication of bone grafts. The greater the number of mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) retained in the scaffold, the better the osteoinductive and angiogenic properties of the scaffold's microenvironment. Improved bioscaffold properties in turn lead to improved bone graft survival, bone regeneration, and angiogenesis. Laminin plays a key role in cell-matrix adhesion, cell proliferation, and differentiation. We designed a collagen-binding domain (CBD) containing the core functional amino acid sequences of laminin α4 (CBD-LN peptide) to supplement the functional surface of a collagen-based decalcified bone matrix (DBM) scaffold. This scaffold promoted MSCs and EPCs early cell adhesion through up-regulating the expression of integrin α5β1 and integrin αvβ3 respectively, thus accelerated the following cell spreading, proliferation, and differentiation. Interestingly, it promoted the retention of MSCs (CD90+/CD105+ cells) and EPCs (CD31+ cells) in the scaffold following the use of clinical SCR technology. Furthermore, the DBM/CBD-LN scaffold induced the formation of type H vessels through the activation of the HIF-1α signaling pathway. The DBM/CBD-LN scaffold displayed rapid bone formation and angiogenesis in vivo, suggesting that it might be used as a new biomaterial in bone tissue engineering. STATEMENT OF SIGNIFICANCE: Selective cell retention technology (SCR) has been utilized in clinical settings to manufacture bioactive bone grafts. Specifically, demineralized bone matrix (DBM) is a widely-used SCR clinical biomaterial but it displays poor adhesion performance and angiogenic activity. In this work, we designed a collagen-binding domain (CBD) containing the core functional amino acid sequences of laminin α4 to supplement the functional surface of a collagen-based DBM scaffold. This bioscaffold promoted SCR-mediated MSCs and EPCs early cell adhesion, thus accelerated the following cell spreading, proliferation, and differentiation. Our results indicate this bioscaffold greatly induced osteogenesis and angiogenesis in vivo. In general, this bioscaffold has a good prospect for SCR application and may provide highly bioactive bone implant in clinical environment.
Collapse
Affiliation(s)
- Yong Tang
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China; Department of Orthopaedics, 72nd Group Army Hospital, Huzhou University, Huzhou, Zhejiang, China
| | - Keyu Luo
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China; Department of Spine Surgery, Center for Orthopedics, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jiulin Tan
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Rui Zhou
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yueqi Chen
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China; Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
| | - Can Chen
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhigang Rong
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Moyuan Deng
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xueke Yu
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chengmin Zhang
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qijie Dai
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wenjie Wu
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianzhong Xu
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Shiwu Dong
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China; Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China.
| | - Fei Luo
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
14
|
Wang K, Zhao Z, Wang X, Zhang Y. BRD4 induces osteogenic differentiation of BMSCs via the Wnt/β-catenin signaling pathway. Tissue Cell 2021; 72:101555. [PMID: 33957539 DOI: 10.1016/j.tice.2021.101555] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/22/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
Bromodomain 4 (BRD4), an important epigenetic regulator, is involved in many bone-related pathologies via promoting osteoclast formation. However, whether and how it participates in the process of osteoblast formation remain unclear. This study aimed to investigate the potential role of BRD4 in osteogenic differentiation of bone marrow stromal cells (BMSCs). Our experiments revealed that an inhibitor of BRD4, JQ1, attenuated osteogenic differentiation of BMSCs. The recombinant adenoviruses for AdBRD4 and AdsiBRD4 could infect BMSCs with high efficiency. Exogenous BRD4 expression potentiated differentiation, and silencing endogenous BRD4 expression decreased it. In addition, the Wnt/β-catenin signaling pathway is known to be important for osteogenic differentiation. Our results showed that AdBRD4 increased the expressions of Wnt3a and β-catenin while AdsiBRD4 decreased the expressions. What's more, the recombinant adenovirus for Adsiβ-catenin, which obviously decreased in β-catenin expression, inhibited BRD4-induced osteogenic differentiation. Conclusion: Our data indicates that the epigenetic reader BRD4 participates in the process of BMSC osteogenic differentiation via the Wnt/β-catenin signaling pathway. This finding may pave the way into further understanding the mechanism of BMSC osteogenic differentiation.
Collapse
Affiliation(s)
- Kai Wang
- Arthritis Clinic and Research Centre, Peking University People's Hospital, Beijing, 100044, China
| | - Zhiping Zhao
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xiangyu Wang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yongtao Zhang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
15
|
Li L, Li H, Wang L, Bu T, Liu S, Mao B, Cheng CY. A local regulatory network in the testis mediated by laminin and collagen fragments that supports spermatogenesis. Crit Rev Biochem Mol Biol 2021; 56:236-254. [PMID: 33761828 DOI: 10.1080/10409238.2021.1901255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is almost five decades since the discovery of the hypothalamic-pituitary-testicular axis. This refers to the hormonal axis that connects the hypothalamus, pituitary gland and testes, which in turn, regulates the production of spermatozoa through spermatogenesis in the seminiferous tubules, and testosterone through steroidogenesis by Leydig cells in the interstitium, of the testes. Emerging evidence has demonstrated the presence of a regulatory network across the seminiferous epithelium utilizing bioactive molecules produced locally at specific domains of the epithelium. Studies have shown that biologically active fragments are produced from structural laminin and collagen chains in the basement membrane. Additionally, bioactive peptides are also produced locally in non-basement membrane laminin chains at the Sertoli-spermatid interface known as apical ectoplasmic specialization (apical ES, a testis-specific actin-based anchoring junction type). These bioactive peptides are derived from structural laminins and/or collagens at the corresponding sites through proteolytic cleavage by matrix metalloproteinases (MMPs). They in turn serve as autocrine and/or paracrine factors to modulate and coordinate cellular events across the epithelium by linking the apical and basal compartments, the apical and basal ES, the blood-testis barrier (BTB), and the basement membrane of the tunica propria. The cellular events supported by these bioactive peptides/fragments include the release of spermatozoa at spermiation, remodeling of the immunological barrier to facilitate the transport of preleptotene spermatocytes across the BTB, and the transport of haploid spermatids across the epithelium to support spermiogenesis. In this review, we critically evaluate these findings. Our goal is to identify research areas that deserve attentions in future years. The proposed research also provides the much needed understanding on the biology of spermatogenesis supported by a local network of regulatory biomolecules.
Collapse
Affiliation(s)
- Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Tiao Bu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shiwen Liu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Baiping Mao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| |
Collapse
|