1
|
Nicholas Nacey, Fox MG, Blankenbaker DG, Chen D, Frick MA, Jawetz ST, Mathiasen RE, Raizman NM, Rajkotia KH, Said N, Stensby JD, Subhas N, Surasi DS, Walker EA, Chang EY. ACR Appropriateness Criteria® Chronic Shoulder Pain: 2022 Update. J Am Coll Radiol 2023; 20:S49-S69. [PMID: 37236752 DOI: 10.1016/j.jacr.2023.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 05/28/2023]
Abstract
Chronic shoulder pain is an extremely common presenting complaint. Potential pain generators include the rotator cuff tendons, biceps tendon, labrum, glenohumeral articular cartilage, acromioclavicular joint, bones, suprascapular and axillary nerves, and the joint capsule/synovium. Radiographs are typically the initial imaging study obtained in patients with chronic shoulder pain. Further imaging may often be required, with modality chosen based on patient symptoms and physical examination findings, which may lead the clinician to suspect a specific pain generator. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.
Collapse
Affiliation(s)
- Nicholas Nacey
- Panel Vice-Chair, University of Virginia Health System, Charlottesville, Virginia.
| | | | - Donna G Blankenbaker
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Doris Chen
- Stanford University, Stanford, California, Primary care physician
| | | | | | - Ross E Mathiasen
- University of Nebraska Medical Center, Omaha, Nebraska; American College of Emergency Physicians
| | - Noah M Raizman
- The Centers for Advanced Orthopaedics, George Washington University, Washington, District of Columbia; American Academy of Orthopaedic Surgeons
| | - Kavita H Rajkotia
- University of Michigan Health System, Ann Arbor, Michigan; Committee on Emergency Radiology-GSER
| | - Nicholas Said
- Duke University Medical Center, Durham, North Carolina
| | | | | | - Devaki Shilpa Surasi
- The University of Texas MD Anderson Cancer Center, Houston, Texas; Commission on Nuclear Medicine and Molecular Imaging
| | - Eric A Walker
- Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, and Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Eric Y Chang
- Specialty Chair, VA San Diego Healthcare System, San Diego, California
| |
Collapse
|
2
|
Wang K, Cheng L, He B. Therapeutic effects of asperosaponin VI in rabbit tendon disease. Regen Ther 2022; 20:1-8. [PMID: 35310016 PMCID: PMC8898761 DOI: 10.1016/j.reth.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 01/20/2023] Open
|
3
|
Blum A, Gillet R, Rauch A, Urbaneja A, Biouichi H, Dodin G, Germain E, Lombard C, Jaquet P, Louis M, Simon L, Gondim Teixeira P. 3D reconstructions, 4D imaging and postprocessing with CT in musculoskeletal disorders: Past, present and future. Diagn Interv Imaging 2020; 101:693-705. [PMID: 33036947 DOI: 10.1016/j.diii.2020.09.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022]
Abstract
Three-dimensional (3D) imaging and post processing are common tasks used daily in many disciplines. The purpose of this article is to review the new postprocessing tools available. Although 3D imaging can be applied to all anatomical regions and used with all imaging techniques, its most varied and relevant applications are found with computed tomography (CT) data in musculoskeletal imaging. These new applications include global illumination rendering (GIR), unfolded rib reformations, subtracted CT angiography for bone analysis, dynamic studies, temporal subtraction and image fusion. In all of these tasks, registration and segmentation are two basic processes that affect the quality of the results. GIR simulates the complete interaction of photons with the scanned object, providing photorealistic volume rendering. Reformations to unfold the rib cage allow more accurate and faster diagnosis of rib lesions. Dynamic CT can be applied to cinematic joint evaluations a well as to perfusion and angiographic studies. Finally, more traditional techniques, such as minimum intensity projection, might find new applications for bone evaluation with the advent of ultra-high-resolution CT scanners. These tools can be used synergistically to provide morphologic, topographic and functional information and increase the versatility of CT.
Collapse
Affiliation(s)
- A Blum
- Guilloz Imaging Department, CHRU of Nancy, 54000 Nancy, France; Unité INSERM U1254 Imagerie Adaptative Diagnostique et Interventionnelle (IADI), CHRU of Nancy, 54511 Vandœuvre-lès-Nancy, France.
| | - R Gillet
- Guilloz Imaging Department, CHRU of Nancy, 54000 Nancy, France
| | - A Rauch
- Guilloz Imaging Department, CHRU of Nancy, 54000 Nancy, France
| | - A Urbaneja
- Guilloz Imaging Department, CHRU of Nancy, 54000 Nancy, France
| | - H Biouichi
- Guilloz Imaging Department, CHRU of Nancy, 54000 Nancy, France
| | - G Dodin
- Guilloz Imaging Department, CHRU of Nancy, 54000 Nancy, France
| | - E Germain
- Guilloz Imaging Department, CHRU of Nancy, 54000 Nancy, France
| | - C Lombard
- Guilloz Imaging Department, CHRU of Nancy, 54000 Nancy, France
| | - P Jaquet
- Guilloz Imaging Department, CHRU of Nancy, 54000 Nancy, France
| | - M Louis
- Guilloz Imaging Department, CHRU of Nancy, 54000 Nancy, France
| | - L Simon
- Guilloz Imaging Department, CHRU of Nancy, 54000 Nancy, France
| | - P Gondim Teixeira
- Guilloz Imaging Department, CHRU of Nancy, 54000 Nancy, France; Unité INSERM U1254 Imagerie Adaptative Diagnostique et Interventionnelle (IADI), CHRU of Nancy, 54511 Vandœuvre-lès-Nancy, France
| |
Collapse
|