1
|
Barat M, Crombé A, Boeken T, Dacher JN, Si-Mohamed S, Dohan A, Chassagnon G, Lecler A, Greffier J, Nougaret S, Soyer P. Imaging in France: 2024 Update. Can Assoc Radiol J 2025; 76:221-231. [PMID: 39367786 DOI: 10.1177/08465371241288425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024] Open
Abstract
Radiology in France has made major advances in recent years through innovations in research and clinical practice. French institutions have developed innovative imaging techniques and artificial intelligence applications in the field of diagnostic imaging and interventional radiology. These include, but are not limited to, a more precise diagnosis of cancer and other diseases, research in dual-energy and photon-counting computed tomography, new applications of artificial intelligence, and advanced treatments in the field of interventional radiology. This article aims to explore the major research initiatives and technological advances that are shaping the landscape of radiology in France. By highlighting key contributions in diagnostic imaging, artificial intelligence, and interventional radiology, we provide a comprehensive overview of how these innovations are improving patient outcomes, enhancing diagnostic accuracy, and expanding the possibilities for minimally invasive therapies. As the field continues to evolve, France's position at the forefront of radiological research ensures that these innovations will play a central role in addressing current healthcare challenges and improving patient care on a global scale.
Collapse
Affiliation(s)
- Maxime Barat
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, Paris, France
- Université Paris Cité, Faculté de Médecine, Paris, France
| | - Amandine Crombé
- Department of Radiology, Pellegrin University Hospital, Bordeaux, France
- SARCOTARGET Team, Bordeaux Institute of Oncology (BRIC) INSERM U1312, Bordeaux, France
| | - Tom Boeken
- Université Paris Cité, Faculté de Médecine, Paris, France
- Department of Vascular and Oncological Interventional Radiology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- HEKA INRIA, INSERM PARCC U 970, Paris, France
| | - Jean-Nicolas Dacher
- Cardiac Imaging Unit, Department of Radiology, University Hospital of Rouen, Rouen, France
- UNIROUEN, Inserm U1096, UFR Médecine Pharmacie, Rouen, France
| | - Salim Si-Mohamed
- Department of Radiology, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, France
- CNRS, INSERM, CREATIS UMR 5220, U1206, Villeurbanne, France
| | - Anthony Dohan
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, Paris, France
- Université Paris Cité, Faculté de Médecine, Paris, France
| | - Guillaume Chassagnon
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, Paris, France
- Université Paris Cité, Faculté de Médecine, Paris, France
| | - Augustin Lecler
- Université Paris Cité, Faculté de Médecine, Paris, France
- Department of Neuroradiology, Fondation Adolphe de Rothschild Hospital, Paris, France
| | - Joel Greffier
- IMAGINE UR UM 103, Montpellier University, Department of Medical Imaging, Nîmes University Hospital, Nîmes, France
| | - Stéphanie Nougaret
- Department of Radiology, Montpellier Cancer Institute, Montpellier, France
- PINKCC Lab, IRCM, U1194, Montpellier, France
| | - Philippe Soyer
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, Paris, France
- Université Paris Cité, Faculté de Médecine, Paris, France
| |
Collapse
|
2
|
Hughes H, Cornelis FH, Scaglione M, Patlas MN. Paranoid About Androids: A Review of Robotics in Radiology. Can Assoc Radiol J 2025; 76:232-238. [PMID: 39394918 DOI: 10.1177/08465371241290076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024] Open
Abstract
In tandem with the ever-increasing global population, the demand for diagnostic radiology service provision is on the rise and at a disproportionate rate compared to the number of radiologists available to practice. The current "revolution in robotics" promises to alleviate personnel shortages in many sectors of industry, including medicine. Despite negative depictions of robots in popular culture, their multiple potential benefits cannot be overlooked, in particular when it comes to health service provision. The type of robots used for interventional procedures are largely robotic-assistance devices, such as the Da Vinci surgical robot. Advances have also been made with regards to robots for image-guided percutaneous needle placement, which have demonstrated superior accuracy compared to manual methods. It is likely that artificial intelligence will come to play a key role in the field of robotics and will result in an increase in the levels of robotic autonomy attainable. However, this concept is not without ethical and legal considerations, most notably who is responsible should an error occur; the physician, the robot manufacturer, software engineers, or the robot itself? Efforts have been made to legislate in order to protect against the potentially harmful effects of unexplainable "black-box" decision outputs of artificial intelligence systems. In order to be accepted by patients, studies have shown that the perceived level of trustworthiness and predictability of robots is crucial. Ultimately, effective, widespread implementation of medical robotic systems will be contingent on developers remaining cognizant of factors that increase human acceptance, as well as ensuring compliance with regulations.
Collapse
Affiliation(s)
- Hannah Hughes
- Department of Radiology, St. Vincent's University Hospital, Dublin, Ireland
| | | | - Mariano Scaglione
- Department of Surgical, Medical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Michael N Patlas
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Cornelis FH, Filippiadis DK, Wiggermann P, Solomon SB, Madoff DC, Milot L, Bodard S. Evaluation of navigation and robotic systems for percutaneous image-guided interventions: A novel metric for advanced imaging and artificial intelligence integration. Diagn Interv Imaging 2025; 106:157-168. [PMID: 39884887 DOI: 10.1016/j.diii.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
PURPOSE Navigation and robotic systems aim to improve the accuracy and efficiency of percutaneous image-guided interventions, but the evaluation of their autonomy and integration of advanced imaging and artificial intelligence (AI) is lacking. The purpose of this study was to evaluate the level of automation and integration of advanced imaging and artificial intelligence in navigation and robotic systems for percutaneous image-guided interventions, using established and novel metrics to categorize and compare their capabilities. MATERIALS AND METHODS Following PRISMA guidelines, a systematic review was conducted to identify studies on clinically validated navigation and robotic systems published between 2000 and May 2024. The PubMed, Embase, Cochrane Library, and Web of Science databases were searched. Data on navigation devices were extracted and analyzed. The levels of autonomy in surgical robotics (LASR) classification system (from 1 to 5) was used to analyze automation. A novel taxonomy, the Levels of Integration of Advanced Imaging and AI (LIAI2) classification system, was created to categorize the integration of imaging technologies and AI (from 1 to 5). These two scores were combined into an aggregate score (from 1 to 10) to reflect the autonomy in percutaneous image-guided intervention. RESULTS The review included 20 studies assessing two navigation systems and eight robotic devices. The median LASR score was 1 (Q1, Q3: 1, 1), the median LIAI2 score was 2 (Q1, Q3: 2, 3), and the median aggregate score was 3 (Q1, Q3: 3, 4). Only one robotic system (10 % of those reviewed) achieved the highest LASR qualification in the literature, a level 2/5. Four systems (40 %) shared the highest rating for LIAI2, which was a score of 3/5. Four systems (40 %) achieved the highest aggregate scores of 4/10. CONCLUSION None of the navigation and robotic systems achieved full autonomy for percutaneous image-guided intervention. The LASR and LIAI2 scales can guide innovation by identifying areas for further development and integration.
Collapse
Affiliation(s)
- Francois H Cornelis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, Department of Radiology, New York, NY 10065, USA.
| | - Dimitrios K Filippiadis
- 2nd Department of Radiology, General University Hospital "ATTIKON", Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Philipp Wiggermann
- Institut Für Röntgendiagnostik Und Nuklearmedizin, Städtisches Klinikum Braunschweig gGmbH, 38126, Braunschweig, Germany
| | - Stephen B Solomon
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, Department of Radiology, New York, NY 10065, USA
| | - David C Madoff
- Department of Radiology, Yale New Haven Hospital, New Haven, CT 06510, USA
| | - Laurent Milot
- Department of Diagnostic and Interventional Radiology, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69005 Lyon, France
| | - Sylvain Bodard
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, 75013 Paris, France
| |
Collapse
|
4
|
Lesaunier A, Khlaut J, Dancette C, Tselikas L, Bonnet B, Boeken T. Artificial intelligence in interventional radiology: Current concepts and future trends. Diagn Interv Imaging 2025; 106:5-10. [PMID: 39261225 DOI: 10.1016/j.diii.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
While artificial intelligence (AI) is already well established in diagnostic radiology, it is beginning to make its mark in interventional radiology. AI has the potential to dramatically change the daily practice of interventional radiology at several levels. In the preoperative setting, recent advances in deep learning models, particularly foundation models, enable effective management of multimodality and increased autonomy through their ability to function minimally without supervision. Multimodality is at the heart of patient-tailored management and in interventional radiology, this translates into the development of innovative models for patient selection and outcome prediction. In the perioperative setting, AI is manifesting itself in applications that assist radiologists in image analysis and real-time decision making, thereby improving the efficiency, accuracy, and safety of interventions. In synergy with advances in robotic technologies, AI is laying the groundwork for an increased autonomy. From a research perspective, the development of artificial health data, such as AI-based data augmentation, offers an innovative solution to this central issue and promises to stimulate research in this area. This review aims to provide the medical community with the most important current and future applications of AI in interventional radiology.
Collapse
Affiliation(s)
- Armelle Lesaunier
- Department of Vascular and Oncological Interventional Radiology, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France; Université Paris Cité, Faculté de Médecine, 75006 Paris, France.
| | | | | | - Lambros Tselikas
- Gustave Roussy, Département d'Anesthésie, Chirurgie et Interventionnel (DACI), 94805 Villejuif, France; Faculté de Médecine, Paris-Saclay University, 94276 Le Kremlin Bicêtre, France
| | - Baptiste Bonnet
- Gustave Roussy, Département d'Anesthésie, Chirurgie et Interventionnel (DACI), 94805 Villejuif, France; Faculté de Médecine, Paris-Saclay University, 94276 Le Kremlin Bicêtre, France
| | - Tom Boeken
- Department of Vascular and Oncological Interventional Radiology, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France; Université Paris Cité, Faculté de Médecine, 75006 Paris, France; HEKA INRIA, INSERM PARCC U 970, 75015 Paris, France
| |
Collapse
|
5
|
Wang N, Xue T, Liu P, Cao P, Xu J, Wei Z, Ye X. Hydrodissection technique for pain relief during peri-microwave ablation in patients with subpleural non-small cell lung cancers. Int J Hyperthermia 2024; 41:2424897. [PMID: 39500486 DOI: 10.1080/02656736.2024.2424897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 05/03/2025] Open
Abstract
PURPOSE This study aimed to assess the application value of the hydrodissection technique (HT) for pain relief during peri-microwave ablation (MWA) in patients with subpleural non-small cell lung cancers (NSCLCs). METHODS This retrospective study comprised 218 patients with subpleural NSCLCs who underwent computed tomography (CT)-guided percutaneous MWA. The patients were divided into two groups: HT-assisted MWA (HT group) and local pleural anesthesia (LPA)-assisted MWA (LPA group). Differences in the effective rates of pain relief during MWA, visual analog scale (VAS) scores post-MWA, complications, and complete ablative rates were assessed. RESULTS The HT group comprised 101 patients (62 males and 39 females; mean age, 61.93 ± 10.57 years), while the LPA group comprised 117 patients (66 males and 51 females; mean age, 62.95 ± 11.16 years). The effective rate of pain relief in the HT group (82/101 patients, 81.19%) was significantly higher than that in the LPA group (66/117 patients, 56.41%), (p < 0.0001). The VAS scores at 6, 12, 24, and 48 h post-MWA were not statistically different between the two groups. The incidence of pneumothorax (grade ≥3) was significantly lower in the HT group (11/101 patients, 10.89%) than in the LPA group (27/117, 23.07%), (p = 0.0161). The complete ablative rates at 1, 3, 6, 12, and 24 months post-MWA were comparable of two groups. CONCLUSIONS These results indicate that HT-assisted MWA of patients with subpleural NSCLCs could effectively provide pain relief and decrease the occurrence of pneumothorax, yielding a satisfactory local therapeutic response.
Collapse
Affiliation(s)
- Nan Wang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Tianyu Xue
- Jining Medical University, Jining, Shandong, China
| | - Peng Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Pikun Cao
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Jingwen Xu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, Shandong, China
| | - Zhigang Wei
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Xin Ye
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| |
Collapse
|
6
|
Biscaldi T, L'Huillier R, Milot L, N'Djin WA. Interstitial Dual-Mode Ultrasound With a 3-mm MR-Compatible Catheter for Image-Guided HIFU and Directional In Vitro Tissue Ablations. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1588-1605. [PMID: 39259638 DOI: 10.1109/tuffc.2024.3458067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Current interstitial techniques of tumor ablation face challenges that ultrasound (US) technologies could meet. The ablation radius and directionality of the US beam could improve the efficiency and precision. Here, a nine-gauge magnetic resonance (MR)-compatible dual-mode US catheter prototype was experimentally evaluated for ultrasound image-guided high-intensity focused ultrasound (USgHIFU) conformal ablations. The prototype consisted of 64 piezocomposite linear-array elements and was driven by an open research programmable dual-mode US platform. After verifying the US image guidance capabilities of the prototype, the high-intensity focused US (HIFU) output performances (dynamic focusing and HIFU intensities) were quantitatively characterized, together with the associated 3-D HIFU-induced thermal heating in tissue phantoms [using MR thermometry (MRT)]. Finally, the ability to produce robustly HIFU-induced thermal ablations in in vitro liver was studied experimentally and compared to numerical modeling. Investigations of several HIFU dynamic focusing allowed overcoming the challenges of miniaturizing the device: monofocal focusing maximized deep energy deposition, while multifocal strategies eliminated grating lobes. The linear-array design of the prototype made it possible to produce interstitial US images of tissue and tumor mimics in situ. Multifocal pressure fields were generated without grating lobes and transducer surface intensities reached up to . Seventeen elementary thermal ablations were performed in vitro. Rotation of the catheter proved the directionality of ablation, sparing nontargeted tissue. This experimental proof of concept demonstrates the feasibility of treating volumes comparable to those of primary solid tumors with a miniaturized USgHIFU catheter whose dimensions are close to those of tools traditionally used in interventional radiology while offering new functionalities.
Collapse
|
7
|
Bonnet B, de Baère T, Beunon P, Feddal A, Tselikas L, Deschamps F. Robotic-assisted CT-guided percutaneous thermal ablation of abdominal tumors: An analysis of 41 patients. Diagn Interv Imaging 2024; 105:227-232. [PMID: 38368177 DOI: 10.1016/j.diii.2024.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/19/2024]
Abstract
PURPOSE Robotic assistance is rapidly evolving and may help physicians optimize needle guidance during percutaneous interventions. The purpose of the study was to report feasibility, safety, accuracy, immediate clinical success and short-term local tumor control after robotic-assisted computed tomography (CT)-guided thermal ablation of abdominal tumors. MATERIALS AND METHODS Forty-one patients who underwent percutaneous thermal ablation of abdominal tumors using robotic-assisted CT-guided were included. All ablations were performed with robotic assistance, using an optically-monitored robotic system with a needle guide sent to preplanned trajectories defined on three-dimensional-volumetric CT acquisitions with respiration monitoring. Endpoints were technical success, safety, distance from needle tip to planned trajectory and number of needle adjustments, and complete ablation rate. RESULTS Forty-one patients (31 men; mean age, 66.7 ± 9.9 [standard deviation (SD)] years [age range: 41-84 years]) were treated for 48 abdominal tumors, with 79 planned needles. Lesions treated were located in the liver (23/41; 56%), kidney (14/41;34%), adrenal gland (3/41; 7%) or retroperitoneum (1/41; 2%). Technical success was achieved in 39/41 (95%) patients, and 76/79 (96%) needle insertions. The mean lateral distance between the needle tip and planned trajectory was 3.2 ± 4.5 (SD) mm (range: 0-20 mm) before adjustments, and the mean three-dimensional distance was 1.6 ± 2.6 (SD) mm (range: 0-13 mm) after 29 manual depth adjustments (29/78; 37%) and 33 lateral adjustments (33/78; 42%). Two (2/79; 3%) needles required complete manual reinsertion. One grade 3 complication was reported in one patient (1/41; 2%). The overall clinical success rate was 100%. The 3-month local tumor control rate (progression free survival) was 95% (38/41). CONCLUSION These results provide further evidence on the use of robotic-assisted needle insertion regarding feasibility, safety, and accuracy, resulting in effective percutaneous thermal ablation of abdominal tumors.
Collapse
Affiliation(s)
- Baptiste Bonnet
- Centre d'Investigation Clinique BIOTHERIS, INSERM CIC1428, Radiologie Interventionnelle; Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, 94805 Villejuif, France
| | - Thierry de Baère
- Centre d'Investigation Clinique BIOTHERIS, INSERM CIC1428, Radiologie Interventionnelle; Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, 94805 Villejuif, France; Gustave Roussy, Service d'Imagerie Thérapeutique, Département d'Anesthésie, Chirurgie et Interventionnel (DACI), 94805 Villejuif, France; Faculté de Médecine, Paris-Saclay Université, 94270 Le Kremlin Bicêtre, France.
| | - Paul Beunon
- Centre d'Investigation Clinique BIOTHERIS, INSERM CIC1428, Radiologie Interventionnelle; Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, 94805 Villejuif, France
| | - Adlane Feddal
- Centre d'Investigation Clinique BIOTHERIS, INSERM CIC1428, Radiologie Interventionnelle; Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, 94805 Villejuif, France
| | - Lambros Tselikas
- Centre d'Investigation Clinique BIOTHERIS, INSERM CIC1428, Radiologie Interventionnelle; Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, 94805 Villejuif, France; Gustave Roussy, Service d'Imagerie Thérapeutique, Département d'Anesthésie, Chirurgie et Interventionnel (DACI), 94805 Villejuif, France; Faculté de Médecine, Paris-Saclay Université, 94270 Le Kremlin Bicêtre, France
| | - Frédéric Deschamps
- Centre d'Investigation Clinique BIOTHERIS, INSERM CIC1428, Radiologie Interventionnelle; Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, 94805 Villejuif, France; Gustave Roussy, Service d'Imagerie Thérapeutique, Département d'Anesthésie, Chirurgie et Interventionnel (DACI), 94805 Villejuif, France
| |
Collapse
|
8
|
L'Huillier R, Dumortier J, Mastier C, Cayot B, Chambon C, Benech N, Stacoffe N, Valette PJ, Milot L. Robotic-assisted percutaneous irreversible electroporation for the treatment of hepatocellular carcinoma. Diagn Interv Imaging 2023; 104:615-617. [PMID: 37679270 DOI: 10.1016/j.diii.2023.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Affiliation(s)
- Romain L'Huillier
- Department of Diagnostic and Interventional Radiology, Hôpital Edouard Herriot, Hospices Civils de Lyon, University of Lyon, 69003 Lyon, France; LabTAU - INSERM U1032, 69003 Lyon, France; The French Comprehensive Liver Center, Hospices Civils de Lyon, University of Lyon, 69004 Lyon, France
| | - Jérôme Dumortier
- The French Comprehensive Liver Center, Hospices Civils de Lyon, University of Lyon, 69004 Lyon, France; Department of Hepatology, Hôpital Edouard Herriot, Hospices Civils de Lyon, University of Lyon, 69003 Lyon, France
| | - Charles Mastier
- Department of Diagnostic and Interventional Radiology, Hôpital Edouard Herriot, Hospices Civils de Lyon, University of Lyon, 69003 Lyon, France
| | - Benedicte Cayot
- Department of Diagnostic and Interventional Radiology, Hôpital Edouard Herriot, Hospices Civils de Lyon, University of Lyon, 69003 Lyon, France
| | - Christine Chambon
- Department of Hepatology, Hôpital Edouard Herriot, Hospices Civils de Lyon, University of Lyon, 69003 Lyon, France
| | - Nicolas Benech
- Department of Hepatology, Hôpital Edouard Herriot, Hospices Civils de Lyon, University of Lyon, 69003 Lyon, France
| | - Nicolas Stacoffe
- Department of Diagnostic and Interventional Radiology, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, University of Lyon, 69495 Pierre-Bénite, France
| | - Pierre-Jean Valette
- Department of Diagnostic and Interventional Radiology, Hôpital Edouard Herriot, Hospices Civils de Lyon, University of Lyon, 69003 Lyon, France
| | - Laurent Milot
- Department of Diagnostic and Interventional Radiology, Hôpital Edouard Herriot, Hospices Civils de Lyon, University of Lyon, 69003 Lyon, France; LabTAU - INSERM U1032, 69003 Lyon, France; The French Comprehensive Liver Center, Hospices Civils de Lyon, University of Lyon, 69004 Lyon, France.
| |
Collapse
|