1
|
Li Y, Zuo H, Wang H, Hu A. Decrease of MLK4 prevents hepatocellular carcinoma (HCC) through reducing metastasis and inducing apoptosis regulated by ROS/MAPKs signaling. Biomed Pharmacother 2019; 116:108749. [PMID: 31071576 DOI: 10.1016/j.biopha.2019.108749] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 01/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) results in large amounts of deaths each year worldwide. To develop more effective treatments for HCC, it is very necessary to define the molecular mechanisms in hepatocarcinogenesis. Mixed lineage kinase (MLK)-4 is a member of the MLK family of mitogen-activated protein kinase kinase kinases, and modulates different cellular responses. However, its role in the meditation of HCC progression remains unclear. In the study, we found that MLK4 was over-expressed in tumor samples of HCC patients. High MLK4 expression was significantly associated with shorter overall survival in HCC. Knockdown of MLK4 inhibited HCC cell proliferation and metastasis, which was partly through reducing matrix metalloproteinase (MMP)-13, MMP2, enhancer of zeste homolog 2 (EZH2) and Vimentin expressions. Apoptosis was significantly induced by MLK4 knockdown in HCC cells via decreasing Bcl-2 and increasing cleaved poly (ADP-ribose) polymerase (PARP), Caspase-7 and -3 expression levels. In addition, MLK4 silence led to a significant reactive oxygen species (ROS) production in liver cancer cells, accompanied with elevated expression of phosphorylated p38, c-Jun N-terminal kinase (JNK) and ERK1/2. Notably, reducing ROS generation and blocking MAPKs (p38/JNK/ERK1/2) signaling markedly abrogated MLK4 knockdown-induced apoptosis in HCC cells. Moreover, MLK4 silence-prevented metastasis was also rescued by scavenging ROS generation and repressing MAPKs pathway. In vivo, injection of MLK4 siRNA markedly inhibited liver tumor growth in xenograft models, and MLK4 knockdown reduced HCC lung metastasis. Together, our study indicated the essential function of MLK4 in HCC progression, providing crucial therapeutic hypothesis for the prevention of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yu Li
- Department of Infectious Diseases, Shaanxi Provincial People's Hospital, the Affiliated Hospital of Xi'an Medical University, Xi'an, 710068, China
| | - Haibo Zuo
- Department of Liver, Gallbladder, Pancreas & Spleen Surgery, Shunde Hospital of Southern Medical University, Foshan, 528000, China
| | - Hongjian Wang
- Second Cancer Subjects, Tengzhou Central People's Hospital, Tengzhou, 277500, China
| | - Anxiang Hu
- Second Cancer Subjects, Tengzhou Central People's Hospital, Tengzhou, 277500, China.
| |
Collapse
|
2
|
Xi Y, Niu J, Li D, He J, Qin L, Peng X. Mixed lineage kinase-4 promotes gastric carcinoma tumorigenesis through suppression of the c-Jun N-terminal kinase signaling pathway. Exp Ther Med 2018; 16:3317-3324. [PMID: 30233678 PMCID: PMC6143876 DOI: 10.3892/etm.2018.6618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/21/2017] [Indexed: 01/08/2023] Open
Abstract
Mixed lineage kinase-4 (MLK-4) is an important member of the mixed-lineage family of kinases that regulates the extracellular signal-regulated kinases and c-Jun N-terminal kinase (JNK) signaling pathways. The functions and mechanisms of MLK-4 in cancer initiation and progression have not been well understood. The present study investigated the expression, function and regulatory mechanism of MLK-4 in gastric carcinoma cells. Biochemical data indicated that normal MLK-4 was downregulated, which exerted dominant negative effects on gastric carcinoma cell viability, migration and invasion. The experimental data demonstrated that MLK-4 supplement abrogated activity of these mutants and induced inhibitory effects on gastric carcinoma cell viabilty, migration and invasion in vitro and in vivo. In addition, to determine the regulatory mechanism of MLK-4, its signaling pathway was assessed in gastric carcinoma cancer cells by regulating MLK-4. The present observations indicated that restoring MLK-4 activity by supplemental MLK-4 reduced gastric carcinoma cell colony formation in vitro and suppressed tumor viability, migration and invasion in vivo. The results of the present study indicated that MLK-4 may be a potential protein for targeting gastric carcinoma by suppressing kinases, which may lead to reduction of JNK signaling and enhance therapeutic efficacy in gastric carcinoma.
Collapse
Affiliation(s)
- Yu Xi
- Department of General Surgery, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Jianhua Niu
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Dongmei Li
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Jiagen He
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Le Qin
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Xinyu Peng
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| |
Collapse
|
3
|
Abi Saab WF, Brown MS, Chadee DN. MLK4β functions as a negative regulator of MAPK signaling and cell invasion. Oncogenesis 2012; 1:e6. [PMID: 23552557 PMCID: PMC3412637 DOI: 10.1038/oncsis.2012.6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mixed lineage kinase (MLK) 4, or MLK4, is a member of the MLK family of mitogen-activated protein kinase kinase kinases (MAP3Ks). Typically, MAP3Ks function to activate the mitogen-activated protein kinase (MAPK)-signaling pathways and regulate different cellular responses. However, here we report that MLK4β, unlike the other MLKs, negatively regulates the activities of the MAPKs, p38, c-Jun N-terminal kinase and extracellular signal-regulated kinase, and the MAP2Ks, MEK3 and 6. Our results show that MLK4β inhibits sorbitol- and tumor necrosis factor-induced activation of p38. Furthermore, MLK4β interacts with another MLK family member, MLK3, in HCT116 cells. Exogenous expression of MLK4β inhibits activation of MLK3 and also blocks matrix metalloproteinase-9 gelatinase activity and invasion in SKOV3 ovarian cancer cells. Collectively, our data establish MLK4β as a novel suppressor of MLK3 activation, MAPK signaling and cell invasion.
Collapse
Affiliation(s)
- W F Abi Saab
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | | | | |
Collapse
|
4
|
Kashuba VI, Grigorieva EV, Kvasha SM, Pavlova TV, Grigoriev V, Protopopov A, Kharchenko O, Gizatullin R, Rynditch AV, Zabarovsky ER. Cloning and Initial Functional Characterization of Mlk4α and Mlk4β. GENOMICS INSIGHTS 2011. [PMID: 26217104 PMCID: PMC4510602 DOI: 10.4137/gei.s6092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We have cloned a novel human mixed-lineage kinase gene, MLK4. Two alternatively spliced forms, MLK4α (580 aa) and MLK4β (1036 aa), have been identified and mapped to chromosomal band 1q42. MLK4 shows high amino acid homology to the kinase catalytic domain of MLK3 (72%), MLK1 (71%) and MLK2 (69%). Strong expression of MLK4 was detected in the human pancreas and kidneys. pCMV-MLK4β c-myc-tagged protein (human) was expressed in the cytoplasm and nucleus of transiently transfected COS-1 cells, while pCMV-MLK4α c-myc-tagged protein (human) was expressed in cytoplasm only. Both MLK4 isoforms reduced the colony formation ability of MCF7 cells by 85%-95% and almost totally suppressed cell proliferation in the CyQUANT cell proliferation assay. Human pCMV-MLK4β transgenic mice expressed the MLK4β in all tissues examined but no phenotypic abnormalities were observed. Thus, in this work, we present the cloning and sequencing of MLK4α and MLK4β for the first time; the data obtained suggest that MLK4 may function as a MAP kinase.
Collapse
Affiliation(s)
- Vladimir I Kashuba
- Department of Microbiology, Tumor and Cell Biology, Department of Clinical Science and Education, Södersjukhuset, Karolinska Institute, Stockholm, 17177, Sweden. ; Institute of Molecular Biology and Genetics, Ukrainian National Academy of Sciences, Kiev, 03143, Ukraine
| | - Elvira V Grigorieva
- Department of Microbiology, Tumor and Cell Biology, Department of Clinical Science and Education, Södersjukhuset, Karolinska Institute, Stockholm, 17177, Sweden. ; Institute of Molecular Biology and Biophysics, Siberian Division of Russian Academy of Medical Sciences, Novosibirsk, 630117, Russia
| | - Sergei M Kvasha
- Institute of Molecular Biology and Genetics, Ukrainian National Academy of Sciences, Kiev, 03143, Ukraine
| | - Tatiana V Pavlova
- Department of Microbiology, Tumor and Cell Biology, Department of Clinical Science and Education, Södersjukhuset, Karolinska Institute, Stockholm, 17177, Sweden. ; Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | | | - Alexei Protopopov
- Department of Microbiology, Tumor and Cell Biology, Department of Clinical Science and Education, Södersjukhuset, Karolinska Institute, Stockholm, 17177, Sweden
| | - Olga Kharchenko
- Department of Microbiology, Tumor and Cell Biology, Department of Clinical Science and Education, Södersjukhuset, Karolinska Institute, Stockholm, 17177, Sweden. ; Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, 199034, Russia
| | - Rinat Gizatullin
- Department of Microbiology, Tumor and Cell Biology, Department of Clinical Science and Education, Södersjukhuset, Karolinska Institute, Stockholm, 17177, Sweden
| | - Alla V Rynditch
- Institute of Molecular Biology and Genetics, Ukrainian National Academy of Sciences, Kiev, 03143, Ukraine
| | - Eugene R Zabarovsky
- Department of Microbiology, Tumor and Cell Biology, Department of Clinical Science and Education, Södersjukhuset, Karolinska Institute, Stockholm, 17177, Sweden. ; Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|