1
|
Tontini GE, Rath T. Be precise, be reproducible! The emerging role of artificial intelligence in inflammatory bowel disease endoscopy. J Crohns Colitis 2025; 19:jjaf046. [PMID: 40338753 DOI: 10.1093/ecco-jcc/jjaf046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Affiliation(s)
- Gian Eugenio Tontini
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Gastroenterology and Endoscopy Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Timo Rath
- Ludwig Demling Center of Endoscopy, Department of Medicine I, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
2
|
Buda A, Pessarelli T, Aldinio G, De Bona M, Iacucci M, Tontini GE. Endoscopic healing in IBD: Still the target to achieve? Dig Liver Dis 2025; 57:519-526. [PMID: 40074573 DOI: 10.1016/j.dld.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025]
Abstract
Mucosal healing is the mainstream goal of modern treat-to-target strategy as it is associated with a significantly more favorable disease course in IBD patients with either ulcerative colitis or Crohn's disease. Recent advances in endoscopic imaging technologies have overcome the traditional concept of mucosal healing assessed with conventional white light imaging, allowing for multiple levels of endoscopic healing up to the boundaries of molecular and functional evaluation. In this review, we focused on conventional and emerging strategies to assess endoscopic healing in ulcerative colitis and ileocolonic Crohn's disease, examining their pros and cons in real life practice.
Collapse
Affiliation(s)
- Andrea Buda
- Department of Gastrointestinal Oncological Surgery, Gastroenterology Unit, AULSS1 Dolomiti, S. Maria del Prato Hospital, Feltre, Italy
| | - Tommaso Pessarelli
- Department of Pathophysiology and Organ Transplantation, University of Milan, Milan, Italy
| | - Giovanni Aldinio
- Department of Pathophysiology and Organ Transplantation, University of Milan, Milan, Italy
| | - Manuela De Bona
- Department of Gastrointestinal Oncological Surgery, Gastroenterology Unit, AULSS1 Dolomiti, S. Maria del Prato Hospital, Feltre, Italy; Gatrointestinal Inflammatory Diseases Departmental Unit, AULSS1 Dolomiti, S. Maria del Prato Hospital, Feltre, Italy
| | - Marietta Iacucci
- APC Microbiome Ireland, College of Medicine and Health, University College of Cork, Cork, Ireland
| | - Gian Eugenio Tontini
- Department of Pathophysiology and Organ Transplantation, University of Milan, Milan, Italy; Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
3
|
Testoni SGG, Albertini Petroni G, Annunziata ML, Dell’Anna G, Puricelli M, Delogu C, Annese V. Artificial Intelligence in Inflammatory Bowel Disease Endoscopy. Diagnostics (Basel) 2025; 15:905. [PMID: 40218255 PMCID: PMC11988936 DOI: 10.3390/diagnostics15070905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 02/19/2025] [Indexed: 04/14/2025] Open
Abstract
Inflammatory bowel diseases (IBDs), comprising Crohn's disease (CD) and ulcerative colitis (UC), are chronic immune-mediated inflammatory diseases of the gastrointestinal (GI) tract with still-elusive etiopathogeneses and an increasing prevalence worldwide. Despite the growing availability of more advanced therapies in the last two decades, there are still a number of unmet needs. For example, the achievement of mucosal healing has been widely demonstrated as a prognostic marker for better outcomes and a reduced risk of dysplasia and cancer; however, the accuracy of endoscopy is crucial for both this aim and the precise and reproducible evaluation of endoscopic activity and the detection of dysplasia. Artificial intelligence (AI) has drastically altered the field of GI studies and is being extensively applied to medical imaging. The utilization of deep learning and pattern recognition can help the operator optimize image classification and lesion segmentation, detect early mucosal abnormalities, and eventually reveal and uncover novel biomarkers with biologic and prognostic value. The role of AI in endoscopy-and potentially also in histology and imaging in the context of IBD-is still at its initial stages but shows promising characteristics that could lead to a better understanding of the complexity and heterogeneity of IBDs, with potential improvements in patient care and outcomes. The initial experience with AI in IBDs has shown its potential value in the differentiation of UC and CD when there is no ileal involvement, reducing the significant amount of time it takes to review videos of capsule endoscopy and improving the inter- and intra-observer variability in endoscopy reports and scoring. In addition, these initial experiences revealed the ability to predict the histologic score index and the presence of dysplasia. Thus, the purpose of this review was to summarize recent advances regarding the application of AI in IBD endoscopy as there is, indeed, increasing evidence suggesting that the integration of AI-based clinical tools will play a crucial role in paving the road to precision medicine in IBDs.
Collapse
Affiliation(s)
- Sabrina Gloria Giulia Testoni
- Unit of Gastroenterology and Digestive Endoscopy, Scientific Institute for Research, Hospitalization and Healthcare Policlinico San Donato, Vita-Salute San Raffaele University, San Donato Milanese, 20097 Milan, Italy
- Unit of Gastroenterology and Digestive Endoscopy, Scientific Institute for Research, Hospitalization and Healthcare Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Guglielmo Albertini Petroni
- Unit of Gastroenterology and Digestive Endoscopy, Scientific Institute for Research, Hospitalization and Healthcare Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Maria Laura Annunziata
- Unit of Gastroenterology and Digestive Endoscopy, Scientific Institute for Research, Hospitalization and Healthcare Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Giuseppe Dell’Anna
- Unit of Gastroenterology and Digestive Endoscopy, Scientific Institute for Research, Hospitalization and Healthcare Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Michele Puricelli
- School of Specialization in Digestive System Diseases, Faculty of Medicine, University of Pavia, 27100 Pavia, Italy
| | - Claudia Delogu
- School of Specialization in Digestive System Diseases, Faculty of Medicine, University of Pavia, 27100 Pavia, Italy
| | - Vito Annese
- Unit of Gastroenterology and Digestive Endoscopy, Scientific Institute for Research, Hospitalization and Healthcare Policlinico San Donato, Vita-Salute San Raffaele University, San Donato Milanese, 20097 Milan, Italy
- Unit of Gastroenterology and Digestive Endoscopy, Scientific Institute for Research, Hospitalization and Healthcare Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| |
Collapse
|
4
|
Lee MCM, Farahvash A, Zezos P. Artificial Intelligence for Classification of Endoscopic Severity of Inflammatory Bowel Disease: A Systematic Review and Critical Appraisal. Inflamm Bowel Dis 2025:izaf050. [PMID: 40163659 DOI: 10.1093/ibd/izaf050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Indexed: 04/02/2025]
Abstract
BACKGROUND Endoscopic scoring indices for ulcerative colitis and Crohn's disease are subject to inter-endoscopist variability. There is increasing interest in the development of deep learning models to standardize endoscopic assessment of intestinal diseases. Here, we summarize and critically appraise the literature on artificial intelligence-assisted endoscopic characterization of inflammatory bowel disease severity. METHODS A systematic search of Ovid MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, and IEEE Xplore was performed to identify reports of AI systems used for endoscopic severity classification of IBD. Selected studies were critically appraised for methodological and reporting quality using APPRAISE-AI. RESULTS Thirty-one studies published between 2019 and 2024 were included. Of 31 studies, 28 studies examined endoscopic classification of ulcerative colitis and 3 examined Crohn's disease. Researchers sought to accomplish a wide range of classification tasks, including binary and multilevel classification, based on still images or full-length colonoscopy videos. Overall scores for study quality ranged from 41 (moderate quality) to 64 (high quality) out of 100, with 28 out of 31 studies within the moderate quality range. The highest-scoring domains were clinical relevance and reporting quality, while the lowest-scoring domains were robustness of results and reproducibility. CONCLUSIONS Multiple AI models have demonstrated the potential for clinical translation for ulcerative colitis. Research concerning the endoscopic severity assessment of Crohn's disease is limited and should be further explored. More rigorous external validation of AI models and increased transparency of data and codes are needed to improve the quality of AI studies.
Collapse
Affiliation(s)
- Michelle Chae Min Lee
- Division of Gastroenterology, Department of Internal Medicine, Thunder Bay Regional Health Sciences Centre, NOSM University, Thunder Bay, ON, Canada
| | - Armin Farahvash
- Division of Gastroenterology, Department of Internal Medicine, Thunder Bay Regional Health Sciences Centre, NOSM University, Thunder Bay, ON, Canada
| | - Petros Zezos
- Division of Gastroenterology, Department of Internal Medicine, Thunder Bay Regional Health Sciences Centre, NOSM University, Thunder Bay, ON, Canada
| |
Collapse
|
5
|
Stidham RW, Ghanem LR, Fletcher JG, Bruining DH. Artificial Intelligence-Enabled Clinical Trials in Inflammatory Bowel Disease: Automating and Enhancing Disease Assessment and Study Management. Gastroenterology 2025:S0016-5085(25)00541-4. [PMID: 40158739 DOI: 10.1053/j.gastro.2025.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/28/2025] [Accepted: 02/01/2025] [Indexed: 04/02/2025]
Affiliation(s)
- Ryan W Stidham
- Division of Gastroenterology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.
| | - Louis R Ghanem
- Janssen Research and Development, Spring House, Pennsylvania
| | | | - David H Bruining
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
6
|
Ramoni D, Scuricini A, Carbone F, Liberale L, Montecucco F. Artificial intelligence in gastroenterology: Ethical and diagnostic challenges in clinical practice. World J Gastroenterol 2025; 31:102725. [PMID: 40093670 PMCID: PMC11886536 DOI: 10.3748/wjg.v31.i10.102725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
This article discusses the manuscript recently published in the World Journal of Gastroenterology, which explores the application of deep learning models in decision-making processes via wireless capsule endoscopy. Integrating artificial intelligence (AI) into gastrointestinal disease diagnosis represents a transformative step toward precision medicine, enhancing real-time accuracy in detecting multi-category lesions at earlier stages, including small bowel lesions and precancerous polyps, ultimately improving patient outcomes. However, the use of AI in clinical settings raises ethical considerations that extend beyond technological potential. Issues of patient privacy, data security, and potential diagnostic biases require careful attention. AI models must prioritize diverse and representative datasets to mitigate inequities and ensure diagnostic accuracy across populations. Furthermore, balancing AI with clinical expertise is crucial, positioning AI as a supportive tool rather than a replacement for physician judgment. Addressing these ethical challenges will support the responsible deployment of AI, through equitable contribution to patient-centered care.
Collapse
Affiliation(s)
- Davide Ramoni
- Department of Internal Medicine, University of Genoa, Genoa 16132, Italy
| | | | - Federico Carbone
- Department of Internal Medicine, University of Genoa, Genoa 16132, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, Italian Cardiovascular Network, IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Luca Liberale
- Department of Internal Medicine, University of Genoa, Genoa 16132, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, Italian Cardiovascular Network, IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, Genoa 16132, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, Italian Cardiovascular Network, IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| |
Collapse
|
7
|
Iacucci M, Santacroce G, Yasuharu M, Ghosh S. Artificial Intelligence-Driven Personalized Medicine: Transforming Clinical Practice in Inflammatory Bowel Disease. Gastroenterology 2025:S0016-5085(25)00494-9. [PMID: 40074186 DOI: 10.1053/j.gastro.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/21/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Inflammatory bowel disease is marked by significant clinical heterogeneity, posing challenges for accurate diagnosis and personalized treatment strategies. Conventional approaches, such as endoscopy and histology, often fail to adequately and accurately predict medium- and long-term outcomes, leading to suboptimal patient management. Artificial intelligence is emerging as a transformative force enabling standardized, accurate, and timely disease assessment and outcome prediction, including therapeutic response. Artificial intelligence-driven intestinal barrier healing assessment provides novel insights into deep healing, facilitating the discovery of novel therapeutic targets. In addition, the automated integration of multi-omics data can enhance patient profiling and personalized management strategies. The future of inflammatory bowel disease care lies in the artificial intelligence-enabled "endo-histo-omics" integrative real-time approach, harmoniously fusing endoscopic, histologic, and molecular data. Despite challenges in its adoption, this paradigm shift has the potential to refine risk stratification, improve therapeutic precision, and enable personalized interventions, ultimately advancing the implementation of precision medicine in routine clinical practice.
Collapse
Affiliation(s)
- Marietta Iacucci
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland.
| | - Giovanni Santacroce
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Maeda Yasuharu
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Subrata Ghosh
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Sedano R, Solitano V, Vuyyuru SK, Yuan Y, Hanžel J, Ma C, Nardone OM, Jairath V. Artificial intelligence to revolutionize IBD clinical trials: a comprehensive review. Therap Adv Gastroenterol 2025; 18:17562848251321915. [PMID: 39996136 PMCID: PMC11848901 DOI: 10.1177/17562848251321915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Integrating artificial intelligence (AI) into clinical trials for inflammatory bowel disease (IBD) has potential to be transformative to the field. This article explores how AI-driven technologies, including machine learning (ML), natural language processing, and predictive analytics, have the potential to enhance important aspects of IBD trials-from patient recruitment and trial design to data analysis and personalized treatment strategies. As AI advances, it has potential to improve long-standing challenges in trial efficiency, accuracy, and personalization with the goal of accelerating the discovery of novel therapies and improve outcomes for people living with IBD. AI can streamline multiple trial phases, from target identification and patient recruitment to data analysis and monitoring. By integrating multi-omics data, electronic health records, and imaging repositories, AI can uncover molecular targets and personalize trial strategies, ultimately expediting drug development. However, the adoption of AI in IBD clinical trials encounters significant challenges. These include technical barriers in data integration, ethical concerns regarding patient privacy, and regulatory issues related to AI validation standards. Additionally, AI models risk producing biased outcomes if training datasets lack diversity, potentially impacting underrepresented populations in clinical trials. Addressing these limitations requires standardized data formats, interdisciplinary collaboration, and robust ethical frameworks to ensure inclusivity and accuracy. Continued partnerships among clinicians, researchers, data scientists, and regulators will be essential to establish transparent, patient-centered AI frameworks. By overcoming these obstacles, AI has the potential to enhance the efficiency, equity, and efficacy of IBD clinical trials, ultimately benefiting patient care.
Collapse
Affiliation(s)
- Rocio Sedano
- Division of Gastroenterology, Department of Medicine, Western University, London, ON, Canada
- Department of Epidemiology and Biostatistics, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Virginia Solitano
- Department of Epidemiology and Biostatistics, Western University, London, ON, Canada
- Division of Gastroenterology and Gastrointestinal Endoscopy, IRCCS Ospedale San Raffaele, Università Vita-Salute San Raffaele, Milan, Lombardy, Italy
| | - Sudheer K. Vuyyuru
- Division of Gastroenterology, Department of Medicine, Western University, London, ON, Canada
| | - Yuhong Yuan
- Division of Gastroenterology, Department of Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Jurij Hanžel
- Department of Gastroenterology, University Medical Centre Ljubljana, University of Ljubljana, Ljubljana, Slovenia
| | - Christopher Ma
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Olga Maria Nardone
- Gastroenterology, Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Vipul Jairath
- Division of Gastroenterology, Department of Medicine, Western University, London, ON, Canada
- Department of Epidemiology and Biostatistics, Western University, London, ON, Canada
- Lawson Health Research Institute, Room A10-219, University Hospital, 339 Windermere Rd, London, ON N6A 5A5, Canada
| |
Collapse
|
9
|
Silverman AL, Shung D, Stidham RW, Kochhar GS, Iacucci M. How Artificial Intelligence Will Transform Clinical Care, Research, and Trials for Inflammatory Bowel Disease. Clin Gastroenterol Hepatol 2025; 23:428-439.e4. [PMID: 38992406 PMCID: PMC11719376 DOI: 10.1016/j.cgh.2024.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 07/13/2024]
Abstract
Artificial intelligence (AI) refers to computer-based methodologies that use data to teach a computer to solve pre-defined tasks; these methods can be applied to identify patterns in large multi-modal data sources. AI applications in inflammatory bowel disease (IBD) includes predicting response to therapy, disease activity scoring of endoscopy, drug discovery, and identifying bowel damage in images. As a complex disease with entangled relationships between genomics, metabolomics, microbiome, and the environment, IBD stands to benefit greatly from methodologies that can handle this complexity. We describe current applications, critical challenges, and propose future directions of AI in IBD.
Collapse
Affiliation(s)
- Anna L Silverman
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona.
| | - Dennis Shung
- Section of Digestive Diseases, Department of Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Ryan W Stidham
- Division of Gastroenterology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan; Michigan Institute for Data Science, University of Michigan, Ann Arbor, Michigan
| | - Gursimran S Kochhar
- Division of Gastroenterology, Hepatology, and Nutrition, Allegheny Health Network, Pittsburgh, Pennsylvania
| | - Marietta Iacucci
- University of Birmingham, Institute of Immunology and Immunotherapy, Birmingham, United Kingdom; College of Medicine and Health, University College Cork, and APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
10
|
Kuroki T, Maeda Y, Kudo SE, Ogata N, Takabayashi K, Takenaka K, Kawashima J, Kawabata Y, Iwasaki S, Shiina O, Morita Y, Kouyama Y, Sakurai T, Ogawa Y, Baba T, Mori Y, Iacucci M, Ogata H, Ohtsuka K, Misawa M. Combination of white-light imaging-based and narrow-band imaging-based artificial intelligence models during colonoscopy in patients with ulcerative colitis. J Crohns Colitis 2025; 19:jjaf014. [PMID: 39888722 DOI: 10.1093/ecco-jcc/jjaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Indexed: 02/02/2025]
Abstract
BACKGROUND AND AIMS The long-term treat-to-target (T2T) approach in ulcerative colitis (UC) aims for endoscopic remission, but variability among endoscopists and a lack of precision in relapse prediction both limit its clinical usefulness. A recently reported white-light imaging (WLI) artificial intelligence (AI) model helps standardize diagnosis, although challenges remain. Therefore, we attempted to combine a narrow-band imaging (NBI) AI model with the WLI AI model to determine whether these challenges can be overcome. METHODS This post hoc analysis of a prospective study evaluated the efficacy of combining AI-assisted WLI and NBI models in predicting clinical relapse in patients with UC over a 12-month follow-up period. A total of 102 patients with UC in clinical remission were included, and the combined AI models were used during colonoscopy to assess relapse risk. RESULTS The study found that within the same AI-based Mayo endoscopic subscore category, patients with vascular activity were more likely to experience clinical relapse than those with vascular healing. Compared with the WLI model alone, the specificity of the combined method significantly increased from 42.2% (95% confidence interval [CI]: 32.1%-52.9%) to 61.5% (95% CI: 50.7%-71.2%) (P = .013) with its sensitivity being maintained. CONCLUSIONS The sequential use of WLI and NBI AI models can provide better stratification of relapse risk compared with using either model alone, offering a more accurate and personalized approach to treatment intensification. This dual-model AI approach aligns with the T2T approach in UC management.
Collapse
Affiliation(s)
- Takanori Kuroki
- Digestive Disease Center, Showa Medical University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Yasuharu Maeda
- Digestive Disease Center, Showa Medical University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Shin-Ei Kudo
- Digestive Disease Center, Showa Medical University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Noriyuki Ogata
- Digestive Disease Center, Showa Medical University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Kaoru Takabayashi
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan
| | - Kento Takenaka
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jiro Kawashima
- Digestive Disease Center, Showa Medical University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Yurie Kawabata
- Digestive Disease Center, Showa Medical University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Shunto Iwasaki
- Digestive Disease Center, Showa Medical University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Osamu Shiina
- Digestive Disease Center, Showa Medical University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Yuriko Morita
- Digestive Disease Center, Showa Medical University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Yuta Kouyama
- Digestive Disease Center, Showa Medical University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Tatsuya Sakurai
- Digestive Disease Center, Showa Medical University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Yushi Ogawa
- Digestive Disease Center, Showa Medical University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Toshiyuki Baba
- Digestive Disease Center, Showa Medical University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Yuichi Mori
- Digestive Disease Center, Showa Medical University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
- Clinical Effectiveness Research Group, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Marietta Iacucci
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Haruhiko Ogata
- Center for Preventive Medicine, Keio University, Tokyo, Japan
- Fujita Medical Innovation Center Tokyo, Tokyo, Japan
| | - Kazuo Ohtsuka
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
- Endoscopy Unit, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masashi Misawa
- Digestive Disease Center, Showa Medical University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| |
Collapse
|
11
|
Iacucci M, Santacroce G, Zammarchi I, Maeda Y, Del Amor R, Meseguer P, Kolawole BB, Chaudhari U, Di Sabatino A, Danese S, Mori Y, Grisan E, Naranjo V, Ghosh S. Artificial intelligence and endo-histo-omics: new dimensions of precision endoscopy and histology in inflammatory bowel disease. Lancet Gastroenterol Hepatol 2024; 9:758-772. [PMID: 38759661 DOI: 10.1016/s2468-1253(24)00053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 05/19/2024]
Abstract
Integrating artificial intelligence into inflammatory bowel disease (IBD) has the potential to revolutionise clinical practice and research. Artificial intelligence harnesses advanced algorithms to deliver accurate assessments of IBD endoscopy and histology, offering precise evaluations of disease activity, standardised scoring, and outcome prediction. Furthermore, artificial intelligence offers the potential for a holistic endo-histo-omics approach by interlacing and harmonising endoscopy, histology, and omics data towards precision medicine. The emerging applications of artificial intelligence could pave the way for personalised medicine in IBD, offering patient stratification for the most beneficial therapy with minimal risk. Although artificial intelligence holds promise, challenges remain, including data quality, standardisation, reproducibility, scarcity of randomised controlled trials, clinical implementation, ethical concerns, legal liability, and regulatory issues. The development of standardised guidelines and interdisciplinary collaboration, including policy makers and regulatory agencies, is crucial for addressing these challenges and advancing artificial intelligence in IBD clinical practice and trials.
Collapse
Affiliation(s)
- Marietta Iacucci
- APC Microbiome Ireland, College of Medicine and Health, University College of Cork, Cork, Ireland.
| | - Giovanni Santacroce
- APC Microbiome Ireland, College of Medicine and Health, University College of Cork, Cork, Ireland
| | - Irene Zammarchi
- APC Microbiome Ireland, College of Medicine and Health, University College of Cork, Cork, Ireland
| | - Yasuharu Maeda
- APC Microbiome Ireland, College of Medicine and Health, University College of Cork, Cork, Ireland
| | - Rocío Del Amor
- Instituto de Investigación e Innovación en Bioingeniería, HUMAN-tech, Universitat Politècnica de València, València, Spain
| | - Pablo Meseguer
- Instituto de Investigación e Innovación en Bioingeniería, HUMAN-tech, Universitat Politècnica de València, València, Spain; Valencian Graduate School and Research Network of Artificial Intelligence, Valencia, Spain
| | | | | | - Antonio Di Sabatino
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and University Vita-Salute San Raffaele, Milan, Italy
| | - Yuichi Mori
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway; Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Enrico Grisan
- School of Engineering, London South Bank University, London, UK
| | - Valery Naranjo
- Instituto de Investigación e Innovación en Bioingeniería, HUMAN-tech, Universitat Politècnica de València, València, Spain
| | - Subrata Ghosh
- APC Microbiome Ireland, College of Medicine and Health, University College of Cork, Cork, Ireland
| |
Collapse
|
12
|
Mestrovic A, Perkovic N, Bozic D, Kumric M, Vilovic M, Bozic J. Precision Medicine in Inflammatory Bowel Disease: A Spotlight on Emerging Molecular Biomarkers. Biomedicines 2024; 12:1520. [PMID: 39062093 PMCID: PMC11274502 DOI: 10.3390/biomedicines12071520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammatory bowel diseases (IBD) remain challenging in terms of understanding their causes and in terms of diagnosing, treating, and monitoring patients. Modern diagnosis combines biomarkers, imaging, and endoscopic methods. Common biomarkers like CRP and fecal calprotectin, while invaluable tools, have limitations and are not entirely specific to IBD. The limitations of existing markers and the invasiveness of endoscopic procedures highlight the need to discover and implement new markers. With an ideal biomarker, we could predict the risk of disease development, as well as the possibility of response to a particular therapy, which would be significant in elucidating the pathogenesis of the disease. Recent research in the fields of machine learning, proteomics, epigenetics, and gut microbiota provides further insight into the pathogenesis of the disease and is also revealing new biomarkers. New markers, such as BAFF, PGE-MUM, oncostatin M, microRNA panels, αvβ6 antibody, and S100A12 from stool, are increasingly being identified, with αvβ6 antibody and oncostatin M being potentially close to being presented into clinical practice. However, the specificity of certain markers still remains problematic. Furthermore, the use of expensive and less accessible technology for detecting new markers, such as microRNAs, represents a limitation for widespread use in clinical practice. Nevertheless, the need for non-invasive, comprehensive markers is becoming increasingly important regarding the complexity of treatment and overall management of IBD.
Collapse
Affiliation(s)
- Antonio Mestrovic
- Department of Gastroenterology, University Hospital of Split, Spinciceva 2, 21000 Split, Croatia; (A.M.); (N.P.); (D.B.)
| | - Nikola Perkovic
- Department of Gastroenterology, University Hospital of Split, Spinciceva 2, 21000 Split, Croatia; (A.M.); (N.P.); (D.B.)
| | - Dorotea Bozic
- Department of Gastroenterology, University Hospital of Split, Spinciceva 2, 21000 Split, Croatia; (A.M.); (N.P.); (D.B.)
| | - Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia;
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia
| | - Marino Vilovic
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia;
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia;
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia
| |
Collapse
|
13
|
Maeda Y, Kudo SE, Santacroce G, Ogata N, Misawa M, Iacucci M. Artificial intelligence-assisted colonoscopy to identify histologic remission and predict the outcomes of patients with ulcerative colitis: A systematic review. Dig Liver Dis 2024; 56:1119-1125. [PMID: 38643020 DOI: 10.1016/j.dld.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/11/2024] [Accepted: 04/04/2024] [Indexed: 04/22/2024]
Abstract
This systematic review evaluated the current status of AI-assisted colonoscopy to identify histologic remission and predict the clinical outcomes of patients with ulcerative colitis. The use of artificial intelligence (AI) has increased substantially across several medical fields, including gastrointestinal endoscopy. Evidence suggests that it may be helpful to predict histologic remission and relapse, which would be beneficial because current histological diagnosis is limited by the inconvenience of obtaining biopsies and the high cost and time-intensiveness of pathological diagnosis. MEDLINE and the Cochrane Central Register of Controlled Trials were searched for studies published between January 1, 2000, and October 31, 2023. Nine studies fulfilled the selection criteria and were included; five evaluated the prediction of histologic remission, two assessed the prediction of clinical outcomes, and two evaluated both. Seven were prospective observational or cohort studies, while two were retrospective observational studies. No randomized controlled trials were identified. AI-assisted colonoscopy demonstrated sensitivity between 65 %-98 % and specificity values of 80 %-97 % for identifying histologic remission. Furthermore, it was able to predict future relapse in patients with ulcerative colitis. However, several challenges and barriers still exist to its routine clinical application, which should be overcome before the true potential of AI-assisted colonoscopy can be fully realized.
Collapse
Affiliation(s)
- Yasuharu Maeda
- Digestive Disease Center, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo, Tsuzuki, Yokohama 224-8503, Japan; APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, T12 YT20, Ireland.
| | - Shin-Ei Kudo
- Digestive Disease Center, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo, Tsuzuki, Yokohama 224-8503, Japan
| | - Giovanni Santacroce
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, T12 YT20, Ireland
| | - Noriyuki Ogata
- Digestive Disease Center, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo, Tsuzuki, Yokohama 224-8503, Japan
| | - Masashi Misawa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo, Tsuzuki, Yokohama 224-8503, Japan
| | - Marietta Iacucci
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, T12 YT20, Ireland
| |
Collapse
|