1
|
Jordano-Raya M, Schrader CE, Ariza RR, Roldán-Arjona T, Córdoba-Cañero D. Divergent evolution of opposite base specificity and single-stranded DNA activity in animal and plant AP endonucleases. Nucleic Acids Res 2025; 53:gkae1297. [PMID: 39778867 PMCID: PMC11707538 DOI: 10.1093/nar/gkae1297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/13/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025] Open
Abstract
Apurinic/apyrimidinic (AP) endonucleases are key enzymes responsible for the repair of base-less nucleotides generated by spontaneous hydrolysis or as DNA repair intermediates. APE1, the major human AP endonuclease, is a druggable target in cancer and its biological function has been extensively studied. However, the molecular features responsible for its substrate specificity are poorly understood. We show here that, in contrast to APE1, its Arabidopsis ortholog ARP (apurinic endonuclease-redox protein) exhibits orphan base-dependent activity on double-stranded DNA and very poor AP cleavage capacity on single-stranded DNA (ssDNA). We found that these differences are largely a consequence of the variation at two DNA intercalating amino acids that have undergone divergent changes in the metazoan and plant lineages. Swapping the identity of the residue invading the minor groove is sufficient to switch the orphan base specificities of APE1 and ARP. The affinity for ssDNA is largely determined by the major groove invading residue, and swapping its identity switches the ability of APE1 and ARP to cleave AP sites in ssDNA. Importantly, we show that the critical residue for ssDNA cleavage is crucial for mammalian APE1 function in antibody class switch recombination, suggesting an evolutionary advantage for ssDNA activity. These findings provide new molecular insights into the evolution of AP endonucleases.
Collapse
Affiliation(s)
- Marina Jordano-Raya
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Avda. Menéndez Pidal s/n, Córdoba 14004, Spain
- Department of Genetics, University of Córdoba, Ctra. N-IVa, Km. 396, Córdoba 14014, Spain
- Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, Córdoba 14004, Spain
- Department of Microbiology, UMass Chan Medical School, University of Massachusetts, 55 Lake Avenue North, Worcester 01655, MA, USA
| | - Carol E Schrader
- Department of Microbiology, UMass Chan Medical School, University of Massachusetts, 55 Lake Avenue North, Worcester 01655, MA, USA
| | - Rafael R Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Avda. Menéndez Pidal s/n, Córdoba 14004, Spain
- Department of Genetics, University of Córdoba, Ctra. N-IVa, Km. 396, Córdoba 14014, Spain
- Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, Córdoba 14004, Spain
| | - Teresa Roldán-Arjona
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Avda. Menéndez Pidal s/n, Córdoba 14004, Spain
- Department of Genetics, University of Córdoba, Ctra. N-IVa, Km. 396, Córdoba 14014, Spain
- Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, Córdoba 14004, Spain
| | - Dolores Córdoba-Cañero
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Avda. Menéndez Pidal s/n, Córdoba 14004, Spain
- Department of Genetics, University of Córdoba, Ctra. N-IVa, Km. 396, Córdoba 14014, Spain
- Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, Córdoba 14004, Spain
| |
Collapse
|
2
|
Kim DV, Diatlova EA, Zharkov TD, Melentyev VS, Yudkina AV, Endutkin AV, Zharkov DO. Back-Up Base Excision DNA Repair in Human Cells Deficient in the Major AP Endonuclease, APE1. Int J Mol Sci 2023; 25:64. [PMID: 38203235 PMCID: PMC10778768 DOI: 10.3390/ijms25010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Apurinic/apyrimidinic (AP) sites are abundant DNA lesions generated both by spontaneous base loss and as intermediates of base excision DNA repair. In human cells, they are normally repaired by an essential AP endonuclease, APE1, encoded by the APEX1 gene. Other enzymes can cleave AP sites by either hydrolysis or β-elimination in vitro, but it is not clear whether they provide the second line of defense in living cells. Here, we studied AP site repairs in APEX1 knockout derivatives of HEK293FT cells using a reporter system based on transcriptional mutagenesis in the enhanced green fluorescent protein gene. Despite an apparent lack of AP site-processing activity in vitro, the cells efficiently repaired the tetrahydrofuran AP site analog resistant to β-elimination. This ability persisted even when the second AP endonuclease homolog, APE2, was also knocked out. Moreover, APEX1 null cells were able to repair uracil, a DNA lesion that is removed via the formation of an AP site. If AP site hydrolysis was chemically blocked, the uracil repair required the presence of NTHL1, an enzyme that catalyzes β-elimination. Our results suggest that human cells possess at least two back-up AP site repair pathways, one of which is NTHL1-dependent.
Collapse
Affiliation(s)
- Daria V. Kim
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Evgeniia A. Diatlova
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
| | - Timofey D. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
| | - Vasily S. Melentyev
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Anna V. Yudkina
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Anton V. Endutkin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
| | - Dmitry O. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
DNA Repair in Haploid Context. Int J Mol Sci 2021; 22:ijms222212418. [PMID: 34830299 PMCID: PMC8620282 DOI: 10.3390/ijms222212418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 12/15/2022] Open
Abstract
DNA repair is a well-covered topic as alteration of genetic integrity underlies many pathological conditions and important transgenerational consequences. Surprisingly, the ploidy status is rarely considered although the presence of homologous chromosomes dramatically impacts the repair capacities of cells. This is especially important for the haploid gametes as they must transfer genetic information to the offspring. An understanding of the different mechanisms monitoring genetic integrity in this context is, therefore, essential as differences in repair pathways exist that differentiate the gamete’s role in transgenerational inheritance. Hence, the oocyte must have the most reliable repair capacity while sperm, produced in large numbers and from many differentiation steps, are expected to carry de novo variations. This review describes the main DNA repair pathways with a special emphasis on ploidy. Differences between Saccharomyces cerevisiae and Schizosaccharomyces pombe are especially useful to this aim as they can maintain a diploid and haploid life cycle respectively.
Collapse
|
4
|
Complementary Functions of Plant AP Endonucleases and AP Lyases during DNA Repair of Abasic Sites Arising from C:G Base Pairs. Int J Mol Sci 2021; 22:ijms22168763. [PMID: 34445469 PMCID: PMC8395712 DOI: 10.3390/ijms22168763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/23/2022] Open
Abstract
Abasic (apurinic/apyrimidinic, AP) sites are ubiquitous DNA lesions arising from spontaneous base loss and excision of damaged bases. They may be processed either by AP endonucleases or AP lyases, but the relative roles of these two classes of enzymes are not well understood. We hypothesized that endonucleases and lyases may be differentially influenced by the sequence surrounding the AP site and/or the identity of the orphan base. To test this idea, we analysed the activity of plant and human AP endonucleases and AP lyases on DNA substrates containing an abasic site opposite either G or C in different sequence contexts. AP sites opposite G are common intermediates during the repair of deaminated cytosines, whereas AP sites opposite C frequently arise from oxidized guanines. We found that the major Arabidopsis AP endonuclease (ARP) exhibited a higher efficiency on AP sites opposite G. In contrast, the main plant AP lyase (FPG) showed a greater preference for AP sites opposite C. The major human AP endonuclease (APE1) preferred G as the orphan base, but only in some sequence contexts. We propose that plant AP endonucleases and AP lyases play complementary DNA repair functions on abasic sites arising at C:G pairs, neutralizing the potential mutagenic consequences of C deamination and G oxidation, respectively.
Collapse
|
5
|
Lin Y, McMahon A, Driscoll G, Bullock S, Zhao J, Yan S. Function and molecular mechanisms of APE2 in genome and epigenome integrity. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108347. [PMID: 34083046 DOI: 10.1016/j.mrrev.2020.108347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
APE2 is a rising vital player in the maintenance of genome and epigenome integrity. In the past several years, a series of studies have shown the critical roles and functions of APE2. We seek to provide the first comprehensive review on several aspects of APE2 in genome and epigenome integrity. We first summarize the distinct functional domains or motifs within APE2 including EEP (endonuclease/exonuclease/phosphatase) domain, PIP box and Zf-GRF motifs from eight species (i.e., Homo sapiens, Mus musculus, Xenopus laevis, Ciona intestinalis, Arabidopsis thaliana, Schizosaccharomyces pombe, Saccharomyces cerevisiae, and Trypanosoma cruzi). Then we analyze various APE2 nuclease activities and associated DNA substrates, including AP endonuclease, 3'-phosphodiesterase, 3'-phosphatase, and 3'-5' exonuclease activities. We also examine several APE2 interaction proteins, including PCNA, Chk1, APE1, Myh1, and homologous recombination (HR) factors such as Rad51, Rad52, BRCA1, BRCA2, and BARD1. Furthermore, we provide insights into the roles of APE2 in various DNA repair pathways (base excision repair, single-strand break repair, and double-strand break repair), DNA damage response (DDR) pathways (ATR-Chk1 and p53-dependent), immunoglobulin class switch recombination and somatic hypermutation, as well as active DNA demethylation. Lastly, we summarize critical functions of APE2 in growth, development, and diseases. In this review, we provide the first comprehensive perspective which dissects all aspects of the multiple-function protein APE2 in genome and epigenome integrity.
Collapse
Affiliation(s)
- Yunfeng Lin
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, United States
| | - Anne McMahon
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, United States
| | - Garrett Driscoll
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, United States
| | - Sharon Bullock
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, United States
| | - Jianjun Zhao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, United States
| | - Shan Yan
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, United States.
| |
Collapse
|
6
|
Genetic investigation of formaldehyde-induced DNA damage response in Schizosaccharomyces pombe. Curr Genet 2020; 66:593-605. [DOI: 10.1007/s00294-020-01057-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 02/02/2023]
|
7
|
Barbado C, Córdoba-Cañero D, Ariza RR, Roldán-Arjona T. Nonenzymatic release of N7-methylguanine channels repair of abasic sites into an AP endonuclease-independent pathway in Arabidopsis. Proc Natl Acad Sci U S A 2018; 115:E916-E924. [PMID: 29339505 PMCID: PMC5798382 DOI: 10.1073/pnas.1719497115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Abasic (apurinic/apyrimidinic, AP) sites in DNA arise from spontaneous base loss or by enzymatic removal during base excision repair. It is commonly accepted that both classes of AP site have analogous biochemical properties and are equivalent substrates for AP endonucleases and AP lyases, although the relative roles of these two types of enzymes are not well understood. We provide here genetic and biochemical evidence that, in Arabidopsis, AP sites generated by spontaneous loss of N7-methylguanine (N7-meG) are exclusively repaired through an AP endonuclease-independent pathway initiated by FPG, a bifunctional DNA glycosylase with AP lyase activity. Abasic site incision catalyzed by FPG generates a single-nucleotide gap with a 3'-phosphate terminus that is processed by the DNA 3'-phosphatase ZDP before repair is completed. We further show that the major AP endonuclease in Arabidopsis (ARP) incises AP sites generated by enzymatic N7-meG excision but, unexpectedly, not those resulting from spontaneous N7-meG loss. These findings, which reveal previously undetected differences between products of enzymatic and nonenzymatic base release, may shed light on the evolution and biological roles of AP endonucleases and AP lyases.
Collapse
Affiliation(s)
- Casimiro Barbado
- Maimónides Biomedical Research Institute of Córdoba, 14004 Córdoba, Spain
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain
- Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Dolores Córdoba-Cañero
- Maimónides Biomedical Research Institute of Córdoba, 14004 Córdoba, Spain
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain
- Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Rafael R Ariza
- Maimónides Biomedical Research Institute of Córdoba, 14004 Córdoba, Spain;
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain
- Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Teresa Roldán-Arjona
- Maimónides Biomedical Research Institute of Córdoba, 14004 Córdoba, Spain;
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain
- Reina Sofia University Hospital, 14004 Córdoba, Spain
| |
Collapse
|
8
|
Senoo T, Kawano S, Ikeda S. DNA base excision repair and nucleotide excision repair synergistically contribute to survival of stationary-phase cells of the fission yeast Schizosaccharomyces pombe. Cell Biol Int 2016; 41:276-286. [PMID: 28032397 DOI: 10.1002/cbin.10722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/21/2016] [Indexed: 11/05/2022]
Abstract
Defects of genome maintenance may causally contribute to aging. In general, base excision repair (BER) is involved in the repair of subtle base lesions and AP sites, and bulky helix-distorting lesions are restored by nucleotide excision repair (NER). Here, we measured the chronological lifespan (CLS) of BER- and NER-deficient mutants of the fission yeast Schizosaccharomyces pombe, and observed the aging process of cells. The CLS of the nth1 (gene for DNA glycosylase/AP lyase) mutant and the rad16 (a homolog of human XPF) mutant were slightly shorter than that of the wild-type (WT) strain. However, survival of the nth1Δ rad16Δ double mutant was significantly reduced after entry into the stationary phase. Deletion of rad16 in an AP endonuclease mutant apn2Δ also accelerated chronological aging. These results indicate that BER and NER synergistically contribute to genome maintenance in non-dividing cells. Reactive oxygen species (ROS) accumulated in cells during the stationary phase, and nth1Δ rad16Δ cells produced more ROS than WT cells. High mutation frequencies and nuclear DNA fragmentation were observed in nth1Δ rad16Δ stationary-phase cells concurrent with apoptotic-like cell death. Calorie restriction significantly reduced the level of ROS in the stationary phase and extended the CLS of nth1Δ rad16Δ cells. Therefore, ROS production critically affects the survival of the DNA repair mutant during chronological aging.
Collapse
Affiliation(s)
- Takanori Senoo
- Department of Biochemistry, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Shinji Kawano
- Department of Biochemistry, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Shogo Ikeda
- Department of Biochemistry, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| |
Collapse
|
9
|
Noguchi C, Grothusen G, Anandarajan V, Martínez-Lage García M, Terlecky D, Corzo K, Tanaka K, Nakagawa H, Noguchi E. Genetic controls of DNA damage avoidance in response to acetaldehyde in fission yeast. Cell Cycle 2016; 16:45-58. [PMID: 27687866 DOI: 10.1080/15384101.2016.1237326] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Acetaldehyde, a primary metabolite of alcohol, forms DNA adducts and disrupts the DNA replication process, causing genomic instability, a hallmark of cancer. Indeed, chronic alcohol consumption accounts for approximately 3.6% of all cancers worldwide. However, how the adducts are prevented and repaired after acetaldehyde exposure is not well understood. In this report, we used the fission yeast Schizosaccharomyces pombe as a model organism to comprehensively understand the genetic controls of DNA damage avoidance in response to acetaldehyde. We demonstrate that Atd1 functions as a major acetaldehyde detoxification enzyme that prevents accumulation of Rad52-DNA repair foci, while Atd2 and Atd3 have minor roles in acetaldehyde detoxification. We found that acetaldehyde causes DNA damage at the replication fork and activates the cell cycle checkpoint to coordinate cell cycle arrest with DNA repair. Our investigation suggests that acetaldehyde-mediated DNA adducts include interstrand-crosslinks and DNA-protein crosslinks. We also demonstrate that acetaldehyde activates multiple DNA repair pathways. Nucleotide excision repair and homologous recombination, which are both epistatically linked to the Fanconi anemia pathway, have major roles in acetaldehyde tolerance, while base excision repair and translesion synthesis also contribute to the prevention of acetaldehyde-dependent genomic instability. We also show the involvement of Wss1-related metalloproteases, Wss1 and Wss2, in acetaldehyde tolerance. These results indicate that acetaldehyde causes cellular stresses that require cells to coordinate multiple cellular processes in order to prevent genomic instability. Considering that acetaldehyde is a human carcinogen, our genetic studies serve as a guiding investigation into the mechanisms of acetaldehyde-dependent genomic instability and carcinogenesis.
Collapse
Affiliation(s)
- Chiaki Noguchi
- a Department of Biochemistry and Molecular Biology , Drexel University College of Medicine , Philadelphia , PA , USA
| | - Grant Grothusen
- a Department of Biochemistry and Molecular Biology , Drexel University College of Medicine , Philadelphia , PA , USA
| | - Vinesh Anandarajan
- a Department of Biochemistry and Molecular Biology , Drexel University College of Medicine , Philadelphia , PA , USA
| | - Marta Martínez-Lage García
- a Department of Biochemistry and Molecular Biology , Drexel University College of Medicine , Philadelphia , PA , USA
| | - Daniel Terlecky
- a Department of Biochemistry and Molecular Biology , Drexel University College of Medicine , Philadelphia , PA , USA
| | - Krysten Corzo
- a Department of Biochemistry and Molecular Biology , Drexel University College of Medicine , Philadelphia , PA , USA
| | - Katsunori Tanaka
- b Department of Bioscience , School of Science and Technology, Kwansei Gakuin University , Sanda , Japan
| | - Hiroshi Nakagawa
- c Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine , PA , USA
| | - Eishi Noguchi
- a Department of Biochemistry and Molecular Biology , Drexel University College of Medicine , Philadelphia , PA , USA
| |
Collapse
|
10
|
Ormeño F, Barrientos C, Ramirez S, Ponce I, Valenzuela L, Sepúlveda S, Bitar M, Kemmerling U, Machado CR, Cabrera G, Galanti N. Expression and the Peculiar Enzymatic Behavior of the Trypanosoma cruzi NTH1 DNA Glycosylase. PLoS One 2016; 11:e0157270. [PMID: 27284968 PMCID: PMC4902261 DOI: 10.1371/journal.pone.0157270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/26/2016] [Indexed: 02/06/2023] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas’ disease, presents three cellular forms (trypomastigotes, epimastigotes and amastigotes), all of which are submitted to oxidative species in its hosts. However, T. cruzi is able to resist oxidative stress suggesting a high efficiency of its DNA repair machinery.The Base Excision Repair (BER) pathway is one of the main DNA repair mechanisms in other eukaryotes and in T. cruzi as well. DNA glycosylases are enzymes involved in the recognition of oxidative DNA damage and in the removal of oxidized bases, constituting the first step of the BER pathway. Here, we describe the presence and activity of TcNTH1, a nuclear T. cruzi DNA glycosylase. Surprisingly, purified recombinant TcNTH1 does not remove the thymine glycol base, but catalyzes the cleavage of a probe showing an AP site. The same activity was found in epimastigote and trypomastigote homogenates suggesting that the BER pathway is not involved in thymine glycol DNA repair. TcNTH1 DNA-binding properties assayed in silico are in agreement with the absence of a thymine glycol removing function of that parasite enzyme. Over expression of TcNTH1 decrease parasite viability when transfected epimastigotes are submitted to a sustained production of H2O2.Therefore, TcNTH1 is the only known NTH1 orthologous unable to eliminate thymine glycol derivatives but that recognizes and cuts an AP site, most probably by a beta-elimination mechanism. We cannot discard that TcNTH1 presents DNA glycosylase activity on other DNA base lesions. Accordingly, a different DNA repair mechanism should be expected leading to eliminate thymine glycol from oxidized parasite DNA. Furthermore, TcNTH1 may play a role in the AP site recognition and processing.
Collapse
Affiliation(s)
- Fernando Ormeño
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Camila Barrientos
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Santiago Ramirez
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Iván Ponce
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lucía Valenzuela
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sofía Sepúlveda
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mainá Bitar
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ulrike Kemmerling
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gonzalo Cabrera
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail: (GC); (NG)
| | - Norbel Galanti
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail: (GC); (NG)
| |
Collapse
|
11
|
Sakurai E, Susuki M, Kanamitsu K, Kawano S, Ikeda S. Global Genome Nucleotide Excision Repair Proteins Rhp7p and Rhp41p Are Involved in Abasic Site Repair of <i>Schizosaccharomyces pombe</i>. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/abb.2015.64026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Jin J, Hwang BJ, Chang PW, Toth EA, Lu AL. Interaction of apurinic/apyrimidinic endonuclease 2 (Apn2) with Myh1 DNA glycosylase in fission yeast. DNA Repair (Amst) 2014; 15:1-10. [PMID: 24559510 PMCID: PMC3967872 DOI: 10.1016/j.dnarep.2014.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 12/27/2013] [Accepted: 01/06/2014] [Indexed: 12/29/2022]
Abstract
Oxidative DNA damage is repaired primarily by the base excision repair (BER) pathway in a process initiated by removal of base lesions or mismatched bases by DNA glycosylases. MutY homolog (MYH, MUTYH, or Myh1) is a DNA glycosylase which excises adenine paired with the oxidative lesion 8-oxo-7,8-dihydroguanine (8-oxoG, or G°), thus reducing G:C to T:A mutations. The resulting apurinic/apyrimidinic (AP) site is processed by an AP-endonuclease or a bifunctional glycosylase/lyase. We show here that the major Schizosaccharomyces pombe AP endonuclease, Apn2, binds to the inter-domain connector located between the N- and C-terminal domains of Myh1. This Myh1 inter-domain connector also interacts with the Hus1 subunit of the Rad9-Rad1-Hus1 checkpoint clamp. Mutagenesis studies indicate that Apn2 and Hus1 bind overlapping but different sequence motifs on Myh1. Mutation on I(261) of Myh1 reduces its interaction with Hus1, but only slightly attenuates its interaction with Apn2. However, E(262) of Myh1 is a key determinant for both Apn2 and Hus1 interactions. Like human APE1, Apn2 has 3'-phosphodiesterase activity. However, unlike hAPE1, Apn2 has a weak AP endonuclease activity which cleaves the AP sites generated by Myh1 glycosylase. Functionally, Apn2 stimulates Myh1 glycosylase activity and Apn2 phosphodiesterase activity is stimulated by Myh1. The cross stimulation of Myh1 and Apn2 enzymatic activities is dependent on their physical interaction. Thus, Myh1 and Apn2 constitute an initial BER complex.
Collapse
Affiliation(s)
- Jin Jin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Bor-Jang Hwang
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Po-Wen Chang
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Eric A Toth
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Rockville, MD 20850, USA
| | - A-Lien Lu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
13
|
Sepúlveda S, Valenzuela L, Ponce I, Sierra S, Bahamondes P, Ramirez S, Rojas V, Kemmerling U, Galanti N, Cabrera G. Expression, Functionality, and Localization of Apurinic/Apyrimidinic Endonucleases in Replicative and Non-Replicative Forms ofTrypanosoma cruzi. J Cell Biochem 2013; 115:397-409. [DOI: 10.1002/jcb.24675] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/10/2013] [Indexed: 12/11/2022]
Affiliation(s)
- S. Sepúlveda
- Programa de Biología Celular y Molecular; Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile; Santiago Chile
| | - L. Valenzuela
- Programa de Biología Celular y Molecular; Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile; Santiago Chile
| | - I. Ponce
- Programa de Biología Celular y Molecular; Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile; Santiago Chile
| | - S. Sierra
- Programa de Biología Celular y Molecular; Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile; Santiago Chile
| | - P. Bahamondes
- Programa de Biología Celular y Molecular; Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile; Santiago Chile
| | - S. Ramirez
- Programa de Biología Celular y Molecular; Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile; Santiago Chile
| | - V. Rojas
- Laboratorio de Genética e Inmunología Molecular; Instituto de Biología, Pontificia Universidad Católica de Valparaíso; Chile
| | - U. Kemmerling
- Programa de Anatomía y Biología del Desarrollo; Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile; Santiago Chile
| | - N. Galanti
- Programa de Biología Celular y Molecular; Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile; Santiago Chile
| | - G. Cabrera
- Programa de Biología Celular y Molecular; Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile; Santiago Chile
| |
Collapse
|
14
|
Kashkina E, Qi T, Weinfeld M, Young D. Polynucleotide kinase/phosphatase, Pnk1, is involved in base excision repair in Schizosaccharomyces pombe. DNA Repair (Amst) 2012; 11:676-83. [PMID: 22748672 DOI: 10.1016/j.dnarep.2012.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/03/2012] [Accepted: 06/03/2012] [Indexed: 11/30/2022]
Abstract
We previously reported that Schizosaccharomyces pombe pnk1 cells are more sensitive than wild-type cells to γ-radiation and camptothecin, indicating that Pnk1 is required for DNA repair. Here, we report that pnk1pku70 and pnk1rhp51 double mutants are more sensitive to γ-radiation than single mutants, from which we infer that Pnk1's primary role is independent of either homologous recombination or non-homologous end joining mechanisms. We also report that pnk1 cells are more sensitive than wild-type cells to oxidizing and alkylating agents, suggesting that Pnk1 is involved in base excision repair. Mutational analysis of Pnk1 revealed that the DNA 3'-phosphatase activity is necessary for repair of DNA damage, whereas the 5'-kinase activity is dispensable. A role for Pnk1 in base excision repair is supported by genetic analyses which revealed that pnk1apn2 is synthetically lethal, suggesting that Pnk1 and Apn2 may function in parallel pathways essential for the repair of endogenous DNA damage. Furthermore, the nth1pnk1apn2 and tdp1pnk1apn2 triple mutants are viable, implying that single-strand breaks with 3'-blocked termini produced by Nth1 and Tdp1 contribute to synthetic lethality. We also examined the sensitivity to methyl methanesulfonate of all single and double mutant combinations of nth1, apn2, tdp1 and pnk1. Together, our results support a model where Tdp1 and Pnk1 act in concert in an Apn2-independent base excision repair pathway to repair 3'-blocked termini produced by Nth1; and they also provide evidence that Pnk1 has additional roles in base excision repair.
Collapse
Affiliation(s)
- Ekaterina Kashkina
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, AB T2N4N1, Canada
| | | | | | | |
Collapse
|
15
|
Nilsen L, Forstrøm RJ, Bjørås M, Alseth I. AP endonuclease independent repair of abasic sites in Schizosaccharomyces pombe. Nucleic Acids Res 2011; 40:2000-9. [PMID: 22084197 PMCID: PMC3300018 DOI: 10.1093/nar/gkr933] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Abasic (AP) sites are formed spontaneously and are inevitably intermediates during base excision repair of DNA base damages. AP sites are both mutagenic and cytotoxic and key enzymes for their removal are AP endonucleases. However, AP endonuclease independent repair initiated by DNA glycosylases performing β,δ-elimination cleavage of the AP sites has been described in mammalian cells. Here, we describe another AP endonuclease independent repair pathway for removal of AP sites in Schizosaccharomyces pombe that is initiated by a bifunctional DNA glycosylase, Nth1 and followed by cleavage of the baseless sugar residue by tyrosyl phosphodiesterase Tdp1. We propose that repair is completed by the action of a polynucleotide kinase, a DNA polymerase and finally a DNA ligase to seal the gap. A fission yeast double mutant of the major AP endonuclease Apn2 and Tdp1 shows synergistic increase in MMS sensitivity, substantiating that Apn2 and Tdp1 process the same substrate. These results add new knowledge to the complex cellular response to AP sites, which could be exploited in chemotherapy where synthetic lethality is a key strategy of treatment.
Collapse
Affiliation(s)
- Line Nilsen
- Department of Microbiology, Oslo University Hospital HF Rikshospitalet, PO Box 4950 Nydalen, N-0424 Oslo, Norway
| | | | | | | |
Collapse
|
16
|
Kanamitsu K, Ikeda S. Fission yeast homologs of human XPC and CSB, rhp41 and rhp26, are involved in transcription-coupled repair of methyl methanesulfonate-induced DNA damage. Genes Genet Syst 2011; 86:83-91. [PMID: 21670547 DOI: 10.1266/ggs.86.83] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Methyl methanesulfonate (MMS) methylates nitrogen atoms in purines, and predominantly produces 7-methylguanine and 3-methyladenine (3-meA). Previously, we showed that base excision repair (BER) and nucleotide excision repair (NER) synergistically function to repair MMS-induced DNA damage in the fission yeast Schizosaccharomyces pombe. Here, we studied the roles of NER components in repair of 3-meA and BER intermediates such as the AP site and single strand breaks. Mutants of rhp41 (XPC homolog) and rhp26 (CSB homolog) exhibited moderate sensitivity to MMS. Transcription of the fbp1 gene, which is induced by glucose starvation, was strongly inhibited by MMS damage in rhp41Δ and rhp26Δ strains but not in wild type and 3-meA DNA glycosylase-deficient cells. The results indicate that Rhp41p and Rhp26p are involved in transcription-coupled repair (TCR) of MMS-induced DNA damage. In the BER pathway of S. pombe, AP lyase activity of Nth1p mainly incises the AP site to generate a 3'-blocked end, which is in turn converted to 3'-OH by Apn2p. Deletion of rad16 or rhp26 in the nth1Δ strain greatly enhanced MMS sensitivity, suggesting that the AP site could also be corrected by TCR. Double mutant apn2Δ/rad16Δ exhibited hypersensitivity to MMS, implying that Rad16p provides a backup pathway for removal of the 3'-blocked end. Moreover, an rhp51Δ strain was extremely sensitive to MMS and double mutants of nth1Δ/rhp51Δ and apn2Δ/rhp51Δ increased the sensitivity, suggesting that homologous recombination is necessary for repair of three different types of lesions, 3-meA, AP sites and 3'-blocked ends.
Collapse
Affiliation(s)
- Kyoichiro Kanamitsu
- Department of Biochemistry, Faculty of Science, Okayama University of Science, Okayama 700-0005, Japan
| | | |
Collapse
|
17
|
Tapia-Alveal C, O'Connell MJ. Nse1-dependent recruitment of Smc5/6 to lesion-containing loci contributes to the repair defects of mutant complexes. Mol Biol Cell 2011; 22:4669-82. [PMID: 21976700 PMCID: PMC3226483 DOI: 10.1091/mbc.e11-03-0272] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Smc5/6 complex is widely believed to be required for homologous recombination. It is shown that repair defects of Smc5/6 mutants are due to the Nse1-dependent recruitment of dysfunctional complexes to lesions. Of the three structural maintenance of chromosomes (SMC) complexes, Smc5/6 remains the most poorly understood. Genetic studies have shown that Smc5/6 mutants are defective in homologous recombination (HR), and consistent with this, Smc5/6 is enriched at lesions. However, Smc5/6 is essential for viability, but HR is not, and the terminal phenotype of null Smc5/6 mutants is mitotic failure. Here we analyze the function of Nse1, which contains a variant RING domain that is characteristic of ubiquitin ligases. Whereas deletion of this domain causes DNA damage sensitivity and mitotic failure, serine mutations in conserved cysteines do not. However, these mutations suppress the DNA damage sensitivity of Smc5/6 hypomorphs but not that of HR mutants and remarkably decrease the recruitment of Smc5/6 to loci containing lesions marked for HR-mediated repair. Analysis of DNA repair pathways in suppressed double mutants suggests that lesions are channeled into recombination-dependent and error-free postreplication repair. Thus the HR defect in Smc5/6 mutants appears to be due to the presence of dysfunctional complexes at lesions rather than to reflect an absolute requirement for Smc5/6 to complete HR.
Collapse
Affiliation(s)
- Claudia Tapia-Alveal
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
18
|
Kanamitsu K, Ikeda S. Early Steps in the DNA Base Excision Repair Pathway of a Fission Yeast Schizosaccharomyces pombe. J Nucleic Acids 2010; 2010. [PMID: 20936170 PMCID: PMC2945677 DOI: 10.4061/2010/450926] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 08/12/2010] [Indexed: 12/04/2022] Open
Abstract
DNA base excision repair (BER) accounts for maintaining genomic integrity by removing damaged bases that are generated endogenously or induced by genotoxic agents. In this paper, we describe the roles of enzymes functioning in the early steps of BER in fission yeast. Although BER is an evolutionarily conserved process, some unique features of the yeast repair pathway were revealed by genetic and biochemical approaches. AP sites generated by monofunctional DNA glycosylases are incised mainly by AP lyase activity of Nth1p, a sole bifunctional glycosylase in yeast, to leave a blocked 3′ end. The major AP endonuclease Apn2p functions predominantly in removing the 3′ block. Finally, a DNA polymerase fills the gap, and a DNA ligase seals the nick (Nth1p-dependent or short patch BER). Apn1p backs up Apn2p. In long patch BER, Rad2p endonuclease removes flap DNA containing a lesion after DNA synthesis. A UV-specific endonuclease Uve1p engages in an alternative pathway by nicking DNA on the 5′ side of oxidative damage. Nucleotide excision repair and homologous recombination are involved in repair of BER intermediates including the AP site and single-strand break with the 3′ block. Other enzymes working in 3′ end processing are also discussed.
Collapse
Affiliation(s)
- Kyoichiro Kanamitsu
- Department of Biochemistry, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | | |
Collapse
|
19
|
Daley JM, Zakaria C, Ramotar D. The endonuclease IV family of apurinic/apyrimidinic endonucleases. Mutat Res 2010; 705:217-27. [PMID: 20667510 DOI: 10.1016/j.mrrev.2010.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 07/03/2010] [Accepted: 07/14/2010] [Indexed: 11/17/2022]
Abstract
Apurinic/apyrimidinic (AP) endonucleases are versatile DNA repair enzymes that possess a variety of nucleolytic activities, including endonuclease activity at AP sites, 3' phosphodiesterase activity that can remove a variety of ligation-blocking lesions from the 3' end of DNA, endonuclease activity on oxidative DNA lesions, and 3' to 5' exonuclease activity. There are two families of AP endonucleases, named for the bacterial counterparts endonuclease IV (EndoIV) and exonuclease III (ExoIII). While ExoIII family members are present in all kingdoms of life, EndoIV members exist in lower organisms but are curiously absent in plants, mammals and some other vertebrates. Here, we review recent research on these enzymes, focusing primarily on the EndoIV family. We address the role(s) of EndoIV members in DNA repair and discuss recent findings from each model organism in which the enzymes have been studied to date.
Collapse
Affiliation(s)
- James M Daley
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, Université de Montréal, 5415 de L'Assomption, Montréal, QC H1T 2M4, Canada
| | | | | |
Collapse
|
20
|
Kanamitsu K, Tanihigashi H, Tanita Y, Inatani S, Ikeda S. Involvement of 3-methyladenine DNA glycosylases Mag1p and Mag2p in base excision repair of methyl methanesulfonate-damaged DNA in the fission yeast Schizosaccharomyces pombe. Genes Genet Syst 2008; 82:489-94. [PMID: 18270439 DOI: 10.1266/ggs.82.489] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Schizosaccharomyces pombe has two paralogues of 3-methyladenine DNA glycosylase, Mag1p and Mag2p, which share homology with Escherichia coli AlkA. To clarify the function of these redundant enzymes in base excision repair (BER) of alkylation damage, we performed several genetic analyses. The mag1 and mag2 single mutants as well as the double mutant showed no obvious methyl methanesulfonate (MMS) sensitivity. Deletion of mag1 or mag2 from an nth1 mutant resulted in tolerance to MMS damage, indicating that both enzymes generate AP sites in vivo by removal of methylated bases. A rad16 mutant that is deficient in nucleotide excision repair (NER) exhibited moderate MMS sensitivity. Deletion of mag1 from the rad16 mutant greatly enhanced MMS sensitivity, and the mag2 deletion also weakened the resistance to MMS of the rad16 mutant. A mag1/mag2/rad16 triple mutant was most sensitive to MMS. These results suggest that the NER pathway obscures the mag1 and mag2 functions in MMS resistance and that both paralogues initiate the BER pathway of MMS-induced DNA damage at the same level in NER-deficient cells or that Mag2p tends to make a little lower contribution than Mag1p. Mag1p and Mag2p functioned additively in vivo. Expression of mag1 and mag2 in the triple mutant confirmed the contribution of Mag1p and Mag2p to BER of MMS resistance.
Collapse
Affiliation(s)
- Kyoichiro Kanamitsu
- Department of Biochemistry, Faculty of Science, Okayama University of Science, Japan
| | | | | | | | | |
Collapse
|
21
|
Hida Y, Ikeda S. Base Excision Repair of Oxidative DNA Damage in a Catalase-deficient Mutant of Schizosaccharomyces pombe. Genes Environ 2008. [DOI: 10.3123/jemsge.30.86] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
22
|
Takahashi T, Tada M, Igarashi S, Koyama A, Date H, Yokoseki A, Shiga A, Yoshida Y, Tsuji S, Nishizawa M, Onodera O. Aprataxin, causative gene product for EAOH/AOA1, repairs DNA single-strand breaks with damaged 3'-phosphate and 3'-phosphoglycolate ends. Nucleic Acids Res 2007; 35:3797-809. [PMID: 17519253 PMCID: PMC1920238 DOI: 10.1093/nar/gkm158] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aprataxin is the causative gene product for early-onset ataxia with ocular motor apraxia and hypoalbuminemia/ataxia with oculomotor apraxia type 1 (EAOH/AOA1), the clinical symptoms of which are predominantly neurological. Although aprataxin has been suggested to be related to DNA single-strand break repair (SSBR), the physiological function of aprataxin remains to be elucidated. DNA single-strand breaks (SSBs) continually produced by endogenous reactive oxygen species or exogenous genotoxic agents, typically possess damaged 3′-ends including 3′-phosphate, 3′-phosphoglycolate, or 3′-α, β-unsaturated aldehyde ends. These damaged 3′-ends should be restored to 3′-hydroxyl ends for subsequent repair processes. Here we demonstrate by in vitro assay that recombinant human aprataxin specifically removes 3′-phosphoglycolate and 3′-phosphate ends at DNA 3′-ends, but not 3′-α, β-unsaturated aldehyde ends, and can act with DNA polymerase β and DNA ligase III to repair SSBs with these damaged 3′-ends. Furthermore, disease-associated mutant forms of aprataxin lack this removal activity. The findings indicate that aprataxin has an important role in SSBR, that is, it removes blocking molecules from 3′-ends, and that the accumulation of unrepaired SSBs with damaged 3′-ends underlies the pathogenesis of EAOH/AOA1. The findings will provide new insight into the mechanism underlying degeneration and DNA repair in neurons.
Collapse
Affiliation(s)
- Tetsuya Takahashi
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
| | - Masayoshi Tada
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
| | - Shuichi Igarashi
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
| | - Akihide Koyama
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
| | - Hidetoshi Date
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
| | - Akio Yokoseki
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
| | - Atsushi Shiga
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
| | - Yutaka Yoshida
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
| | - Shoji Tsuji
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
| | - Masatoyo Nishizawa
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
| | - Osamu Onodera
- Department of Neurology, Clinical Neuroscience Branch, Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-Based Research, Brain Research Institute, Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan and Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo113-8655, Japan
- *To whom correspondence should be addressed. 81 25 227 066581 25 223 6646
| |
Collapse
|
23
|
Lee KM, Nizza S, Hayes T, Bass KL, Irmisch A, Murray JM, O'Connell MJ. Brc1-mediated rescue of Smc5/6 deficiency: requirement for multiple nucleases and a novel Rad18 function. Genetics 2007; 175:1585-95. [PMID: 17277362 PMCID: PMC1855136 DOI: 10.1534/genetics.106.067801] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Smc5/6 is a structural maintenance of chromosomes complex, related to the cohesin and condensin complexes. Recent studies implicate Smc5/6 as being essential for homologous recombination. Each gene is essential, but hypomorphic alleles are defective in the repair of a diverse array of lesions. A particular allele of smc6 (smc6-74) is suppressed by overexpression of Brc1, a six-BRCT domain protein that is required for DNA repair during S-phase. This suppression requires the postreplication repair (PRR) protein Rhp18 and the structure-specific endonucleases Slx1/4 and Mus81/Eme1. However, we show here that the contribution of Rhp18 is via a novel pathway that is independent of PCNA ubiquitination and PRR. Moreover, we identify Exo1 as an additional nuclease required for Brc1-mediated suppression of smc6-74, independent of mismatch repair. Further, the Apn2 endonuclease is required for the viability of smc6 mutants without extrinsic DNA damage, although this is not due to a defect in base excision repair. Several nucleotide excision repair genes are similarly shown to ensure viability of smc6 mutants. The requirement for excision factors for the viability of smc6 mutants is consistent with an inability to respond to spontaneous lesions by Smc5/6-dependent recombination.
Collapse
Affiliation(s)
- Karen M Lee
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Tanihigashi H, Yamada A, Igawa E, Ikeda S. The role of Schizosaccharomyces pombe DNA repair enzymes Apn1p and Uve1p in the base excision repair of apurinic/apyrimidinic sites. Biochem Biophys Res Commun 2006; 347:889-94. [PMID: 16857169 DOI: 10.1016/j.bbrc.2006.06.191] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 06/26/2006] [Indexed: 11/29/2022]
Abstract
In Schizosaccharomyces pombe the repair of apurinic/apyrimidinic (AP) sites is mainly initiated by AP lyase activity of DNA glycosylase Nth1p. In contrast, the major AP endonuclease Apn2p functions by removing 3'-alpha,beta-unsaturated aldehyde ends induced by Nth1p, rather than by incising the AP sites. S. pombe possesses other minor AP endonuclease activities derived from Apn1p and Uve1p. In this study, we investigated the function of these two enzymes in base excision repair (BER) for methyl methanesulfonate (MMS) damage using the nth1 and apn2 mutants. Deletion of apn1 or uve1 from nth1Delta cells did not affect sensitivity to MMS. Exogenous expression of Apn1p failed to suppress the MMS sensitivity of nth1Delta cells. Although Apn1p and Uve1p incised the oligonucleotide containing an AP site analogue, these enzymes could not initiate repair of the AP sites in vivo. Despite this, expression of Apn1p partially restored the MMS sensitivity of apn2Delta cells, indicating that the enzyme functions as a 3'-phosphodiesterase to remove 3'-blocked ends. Localization of Apn1p in the nucleus and cytoplasm hints at an additional function of the enzyme other than nuclear DNA repair. Heterologous expression of Saccharomyces cerevisiae homologue of Apn1p completely restored the MMS resistance of the nth1Delta and apn2Delta cells. This result confirms a difference in the major pathway for processing the AP site between S. pombe and S. cerevisiae cells.
Collapse
Affiliation(s)
- Haruna Tanihigashi
- Department of Biochemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Okayama 700-0005, Japan
| | | | | | | |
Collapse
|
25
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|