1
|
Abstract
At fifteen different genomic locations, the expansion of a CAG/CTG repeat causes a neurodegenerative or neuromuscular disease, the most common being Huntington's disease and myotonic dystrophy type 1. These disorders are characterized by germline and somatic instability of the causative CAG/CTG repeat mutations. Repeat lengthening, or expansion, in the germline leads to an earlier age of onset or more severe symptoms in the next generation. In somatic cells, repeat expansion is thought to precipitate the rate of disease. The mechanisms underlying repeat instability are not well understood. Here we review the mammalian model systems that have been used to study CAG/CTG repeat instability, and the modifiers identified in these systems. Mouse models have demonstrated prominent roles for proteins in the mismatch repair pathway as critical drivers of CAG/CTG instability, which is also suggested by recent genome-wide association studies in humans. We draw attention to a network of connections between modifiers identified across several systems that might indicate pathway crosstalk in the context of repeat instability, and which could provide hypotheses for further validation or discovery. Overall, the data indicate that repeat dynamics might be modulated by altering the levels of DNA metabolic proteins, their regulation, their interaction with chromatin, or by direct perturbation of the repeat tract. Applying novel methodologies and technologies to this exciting area of research will be needed to gain deeper mechanistic insight that can be harnessed for therapies aimed at preventing repeat expansion or promoting repeat contraction.
Collapse
Affiliation(s)
- Vanessa C. Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA,Department of Neurology, Harvard Medical School, Boston, MA, USA,Correspondence to: Vanessa C. Wheeler, Center for Genomic Medicine, Massachusetts Hospital, Boston MAA 02115, USA. E-mail: . and Vincent Dion, UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, CF24 4HQ Cardiff, UK. E-mail:
| | - Vincent Dion
- UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK,Correspondence to: Vanessa C. Wheeler, Center for Genomic Medicine, Massachusetts Hospital, Boston MAA 02115, USA. E-mail: . and Vincent Dion, UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, CF24 4HQ Cardiff, UK. E-mail:
| |
Collapse
|
2
|
Suchkova IO, Borisova EV, Patkin EL. Length Polymorphism and Methylation Status of UPS29 Minisatellite of the ACAP3 Gene as Molecular Biomarker of Epilepsy. Sex Differences in Seizure Types and Symptoms. Int J Mol Sci 2020; 21:E9206. [PMID: 33276684 PMCID: PMC7730309 DOI: 10.3390/ijms21239206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 01/10/2023] Open
Abstract
Epilepsy is a neurological disease with different clinical forms and inter-individuals heterogeneity, which may be associated with genetic and/or epigenetic polymorphisms of tandem-repeated noncoding DNA. These polymorphisms may serve as predictive biomarkers of various forms of epilepsy. ACAP3 is the protein regulating morphogenesis of neurons and neuronal migration and is an integral component of important signaling pathways. This study aimed to carry out an association analysis of the length polymorphism and DNA methylation of the UPS29 minisatellite of the ACAP3 gene in patients with epilepsy. We revealed an association of short UPS29 alleles with increased risk of development of symptomatic and cryptogenic epilepsy in women, and also with cerebrovascular pathologies, structural changes in the brain, neurological status, and the clinical pattern of seizures in both women and men. The increase of frequency of hypomethylated UPS29 alleles in men with symptomatic epilepsy, and in women with both symptomatic and cryptogenic epilepsy was observed. For patients with hypomethylated UPS29 alleles, we also observed structural changes in the brain, neurological status, and the clinical pattern of seizures. These associations had sex-specific nature similar to a genetic association. In contrast with length polymorphism epigenetic changes affected predominantly the long UPS29 allele. We suppose that genetic and epigenetic alterations UPS29 can modify ACAP3 expression and thereby affect the development and clinical course of epilepsy.
Collapse
Affiliation(s)
- Irina O. Suchkova
- Laboratory of Molecular Cytogenetics of Mammalian Development, Department of Molecular Genetics, Institute of Experimental Medicine of the Russian Academy of Sciences, St. Petersburg 197376, Russia;
| | - Elena V. Borisova
- Department of Neurology, Clinic of Institute of Experimental Medicine, St. Petersburg 197376, Russia;
| | - Eugene L. Patkin
- Laboratory of Molecular Cytogenetics of Mammalian Development, Department of Molecular Genetics, Institute of Experimental Medicine of the Russian Academy of Sciences, St. Petersburg 197376, Russia;
| |
Collapse
|
3
|
Yao Y, Kovalchuk I. Exposure to zebularine and 5-azaC triggers microsatellite instability in the exposed Arabidopsis thaliana plants and their progeny. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2017.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4
|
Misregulation of DNA Methylation Regulators in Cancer. DNA AND HISTONE METHYLATION AS CANCER TARGETS 2017. [DOI: 10.1007/978-3-319-59786-7_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Chromatin changes in the development and pathology of the Fragile X-associated disorders and Friedreich ataxia. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:802-10. [PMID: 22245581 DOI: 10.1016/j.bbagrm.2011.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/22/2011] [Accepted: 12/26/2011] [Indexed: 01/11/2023]
Abstract
The Fragile X-associated disorders (FXDs) and Friedreich ataxia (FRDA) are genetic conditions resulting from expansion of a trinucleotide repeat in a region of the affected gene that is transcribed but not translated. In the case of the FXDs, pathology results from expansion of CGG•CCG-repeat tract in the 5' UTR of the FMR1 gene, while pathology in FRDA results from expansion of a GAA•TTC-repeat in intron 1 of the FXN gene. Expansion occurs during gametogenesis or early embryogenesis by a mechanism that is not well understood. Associated Expansion then produces disease pathology in various ways that are not completely understood either. In the case of the FXDs, alleles with 55-200 repeats express higher than normal levels of a transcript that is thought to be toxic, while alleles with >200 repeats are silenced. In addition, alleles with >200 repeats are associated with a cytogenetic abnormality known as a fragile site, which is apparent as a constriction or gap in the chromatin that is seen when cells are grown in presence of inhibitors of thymidylate synthase. FRDA alleles show a deficit of the FXN transcript. This review will address the role of repeat-mediated chromatin changes in these aspects of FXD and FRDA disease pathology. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
|
6
|
Nelson HH, Marsit CJ, Kelsey KT. Global methylation in exposure biology and translational medical science. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:1528-33. [PMID: 21669556 PMCID: PMC3226501 DOI: 10.1289/ehp.1103423] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 06/13/2011] [Indexed: 05/16/2023]
Abstract
BACKGROUND Many groups are actively investigating how the epigenetic state relates to environmental exposures and development of disease, including cancer. There are myriad choices for capturing and measuring the epigenetic state of a tissue, ranging from assessing the total methyl-CpG content to array-based platforms that simultaneously probe hundreds of thousands of CpG loci. There is an emerging literature that uses CpG methylation at repetitive sequences, including LINE-1 (long interspersed nuclear element-1) elements, to capture the epigenomic state. OBJECTIVES We explored the complexity of using CpG methylation at repetitive sequences in epidemiology and translational medical research and suggest needed avenues of research to clarify its meaning and utility. CONCLUSIONS Among the most urgent avenues of research is the need for prospective studies to eliminate the possibilities of reverse causality, and development of new LINE-1 assays that capture both class of LINE-1 element and copy number.
Collapse
Affiliation(s)
- Heather H Nelson
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.
| | | | | |
Collapse
|
7
|
Abstract
It has been more than 17 years since the causative mutation for Huntington's disease was discovered as the expansion of the triplet repeat in the N-terminal portion of the Huntingtin (HTT) gene. In the intervening time, researchers have discovered a great deal about Huntingtin's involvement in a number of cellular processes. However, the role of Huntingtin in the key pathogenic mechanism leading to neurodegeneration in the disease process has yet to be discovered. Here, we review the body of knowledge that has been uncovered since gene discovery and include discussions of the HTT gene, CAG triplet repeat expansion, HTT expression, protein features, posttranslational modifications, and many of its known protein functions and interactions. We also highlight potential pathogenic mechanisms that have come to light in recent years.
Collapse
Affiliation(s)
- Karen N McFarland
- Department of Neurology, University of Florida, Gainesville, FL 32610-0236, USA.
| | | |
Collapse
|
8
|
Convergent transcription through a long CAG tract destabilizes repeats and induces apoptosis. Mol Cell Biol 2010; 30:4435-51. [PMID: 20647539 DOI: 10.1128/mcb.00332-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Short repetitive sequences are common in the human genome, and many fall within transcription units. We have previously shown that transcription through CAG repeat tracts destabilizes them in a way that depends on transcription-coupled nucleotide excision repair and mismatch repair. Recent observations that antisense transcription accompanies sense transcription in many human genes led us to test the effects of antisense transcription on triplet repeat instability in human cells. Here, we report that simultaneous sense and antisense transcription (convergent transcription) initiated from two inducible promoters flanking a CAG95 tract in a nonessential gene enhances repeat instability synergistically, arrests the cell cycle, and causes massive cell death via apoptosis. Using chemical inhibitors and small interfering RNA (siRNA) knockdowns, we identified the ATR (ataxia-telangiectasia mutated [ATM] and Rad3 related) signaling pathway as a key mediator of this cellular response. RNA polymerase II, replication protein A (RPA), and components of the ATR signaling pathway accumulate at convergently transcribed repeat tracts, accompanied by phosphorylation of ATR, CHK1, and p53. Cell death depends on simultaneous sense and antisense transcription and is proportional to their relative levels, it requires the presence of the repeat tract, and it occurs in both proliferating and nonproliferating cells. Convergent transcription through a CAG repeat represents a novel mechanism for triggering a cellular stress response, one that is initiated by events at a single locus in the genome and resembles the response to DNA damage.
Collapse
|
9
|
Instability and chromatin structure of expanded trinucleotide repeats. Trends Genet 2009; 25:288-97. [PMID: 19540013 DOI: 10.1016/j.tig.2009.04.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 04/29/2009] [Accepted: 04/30/2009] [Indexed: 12/16/2022]
Abstract
Trinucleotide repeat expansion underlies at least 17 neurological diseases. In affected individuals, the expanded locus is characterized by dramatic changes in chromatin structure and in repeat tract length. Interestingly, recent studies show that several chromatin modifiers, including a histone acetyltransferase, a DNA methyltransferase and the chromatin insulator CTCF can modulate repeat instability. Here, we propose that the unusual chromatin structure of expanded repeats directly impacts their instability. We discuss several potential models for how this might occur, including a role for DNA repair-dependent epigenetic reprogramming in increasing repeat instability, and the capacity of epigenetic marks to alter sense and antisense transcription, thereby affecting repeat instability.
Collapse
|
10
|
Dion V, Lin Y, Hubert L, Waterland RA, Wilson JH. Dnmt1 deficiency promotes CAG repeat expansion in the mouse germline. Hum Mol Genet 2008; 17:1306-17. [PMID: 18252747 DOI: 10.1093/hmg/ddn019] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Expanded CAG repeat tracts are the cause of at least a dozen neurodegenerative disorders. In humans, long CAG repeats tend to expand during transmissions from parent to offspring, leading to an earlier age of disease onset and more severe symptoms in subsequent generations. Here, we show that the maintenance DNA methyltransferase Dnmt1, which preserves the patterns of CpG methylation, plays a key role in CAG repeat instability in human cells and in the male and female mouse germlines. SiRNA knockdown of Dnmt1 in human cells destabilized CAG triplet repeats, and Dnmt1 deficiency in mice promoted intergenerational expansion of CAG repeats at the murine spinocerebellar ataxia type 1 (Sca1) locus. Importantly, Dnmt1(+/-) SCA1 mice, unlike their Dnmt1(+/+) SCA1 counterparts, closely reproduced the intergenerational instability patterns observed in human SCA1 patients. In addition, we found aberrant DNA and histone methylation at sites within the CpG island that abuts the expanded repeat tract in Dnmt1-deficient mice. These studies suggest that local chromatin structure may play a role in triplet repeat instability. These results are consistent with normal epigenetic changes during germline development contributing to intergenerational instability of CAG repeats in mice and in humans.
Collapse
Affiliation(s)
- Vincent Dion
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, USDA Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|