1
|
Kim JH, Grosbart M, Anand R, Wyman C, Cejka P, Petrini JHJ. The Mre11-Nbs1 Interface Is Essential for Viability and Tumor Suppression. Cell Rep 2017; 18:496-507. [PMID: 28076792 DOI: 10.1016/j.celrep.2016.12.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 11/04/2016] [Accepted: 12/12/2016] [Indexed: 02/02/2023] Open
Abstract
The Mre11 complex (Mre11, Rad50, and Nbs1) is integral to both DNA repair and ataxia telangiectasia mutated (ATM)-dependent DNA damage signaling. All three Mre11 complex components are essential for viability at the cellular and organismal levels. To delineate essential and non-essential Mre11 complex functions that are mediated by Nbs1, we used TALEN-based genome editing to derive Nbs1 mutant mice (Nbs1mid mice), which harbor mutations in the Mre11 interaction domain of Nbs1. Nbs1mid alleles that abolished interaction were incompatible with viability. Conversely, a 108-amino-acid Nbs1 fragment comprising the Mre11 interface was sufficient to rescue viability and ATM activation in cultured cells and support differentiation of hematopoietic cells in vivo. These data indicate that the essential role of Nbs1 is via its interaction with Mre11 and that most of the Nbs1 protein is dispensable for Mre11 complex functions and suggest that Mre11 and Rad50 directly activate ATM.
Collapse
Affiliation(s)
- Jun Hyun Kim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Malgorzata Grosbart
- Department of Molecular Genetics, Erasmus University Medical Center, 3000 Rotterdam, the Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, 3000 Rotterdam, the Netherlands
| | - Roopesh Anand
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Claire Wyman
- Department of Molecular Genetics, Erasmus University Medical Center, 3000 Rotterdam, the Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, 3000 Rotterdam, the Netherlands
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - John H J Petrini
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA.
| |
Collapse
|
2
|
Park YB, Hohl M, Padjasek M, Jeong E, Jin KS, Krężel A, Petrini JHJ, Cho Y. Eukaryotic Rad50 functions as a rod-shaped dimer. Nat Struct Mol Biol 2017; 24:248-257. [PMID: 28134932 PMCID: PMC5625350 DOI: 10.1038/nsmb.3369] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/05/2017] [Indexed: 11/08/2022]
Abstract
The Rad50 hook interface is crucial for assembly and various functions of the Mre11 complex. Previous analyses suggested that Rad50 molecules interact within (intracomplex) or between (intercomplex) dimeric complexes. In this study, we determined the structure of the human Rad50 hook and coiled-coil domains. The data suggest that the predominant structure is the intracomplex, in which the two parallel coiled coils proximal to the hook form a rod shape, and that a novel interface within the coiled-coil domains of Rad50 stabilizes the interaction of Rad50 protomers in the dimeric assembly. In yeast, removal of the coiled-coil interface compromised Tel1 activation without affecting DNA repair, while simultaneous disruption of that interface and the hook phenocopied a null mutation. The results demonstrate that the hook and coiled-coil interfaces coordinately promote intracomplex assembly and define the intracomplex as the functional form of the Mre11 complex.
Collapse
Affiliation(s)
- Young Bong Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Marcel Hohl
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Michał Padjasek
- Laboratory of Chemical Biology, University of Wrocław, Wrocław, Poland
| | - Eunyoung Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, South Korea
| | - Artur Krężel
- Laboratory of Chemical Biology, University of Wrocław, Wrocław, Poland
| | - John H J Petrini
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Yunje Cho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| |
Collapse
|
3
|
Gao Y, Meyer JR, Nelson SW. A network of allosterically coupled residues in the bacteriophage T4 Mre11-Rad50 complex. Protein Sci 2016; 25:2054-2065. [PMID: 27571435 DOI: 10.1002/pro.3028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 11/07/2022]
Abstract
The Mre11-Rad50 (MR) protein complex, made up of a nuclease and ATPase, respectively, is involved in the processing of double-strand breaks as part of an intricate mechanism for their repair. Although it is clear that the MR complex is subject to allosteric regulation and that there is communication between the nuclease and ATPase active sites, the underlying mechanisms are poorly understood. We performed statistical coupling analysis on Mre11 and Rad50 to predict linked residues based on their evolutionary correlation. This analysis predicted a coevolving sector of six residues that may be allosterically coupled. The prediction was tested using double-mutant cycle analysis of nuclease and ATPase activity. The results indicate that a tyrosine residue located near the active site of Mre11 is allosterically coupled to several Rad50 residues located over 40 Å away. This allosteric coupling may be the basis for the reciprocal regulation of the ATPase and nuclease activities of the complex.
Collapse
Affiliation(s)
- Yang Gao
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, 50011
| | - Jennifer R Meyer
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, 50011
| | - Scott W Nelson
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, 50011.
| |
Collapse
|
4
|
Groothuizen FS, Sixma TK. The conserved molecular machinery in DNA mismatch repair enzyme structures. DNA Repair (Amst) 2015; 38:14-23. [PMID: 26796427 DOI: 10.1016/j.dnarep.2015.11.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/05/2015] [Accepted: 11/30/2015] [Indexed: 12/25/2022]
Abstract
The machinery of DNA mismatch repair enzymes is highly conserved in evolution. The process is initiated by recognition of a DNA mismatch, and validated by ATP and the presence of a processivity clamp or a methylation mark. Several events in MMR promote conformational changes that lead to progression of the repair process. Here we discuss functional conformational changes in the MMR proteins and we compare the enzymes to paralogs in other systems.
Collapse
Affiliation(s)
- Flora S Groothuizen
- Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Titia K Sixma
- Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Barfoot T, Herdendorf TJ, Behning BR, Stohr BA, Gao Y, Kreuzer KN, Nelson SW. Functional Analysis of the Bacteriophage T4 Rad50 Homolog (gp46) Coiled-coil Domain. J Biol Chem 2015; 290:23905-15. [PMID: 26242734 DOI: 10.1074/jbc.m115.675132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Indexed: 11/06/2022] Open
Abstract
Rad50 and Mre11 form a complex involved in the detection and processing of DNA double strand breaks. Rad50 contains an anti-parallel coiled-coil with two absolutely conserved cysteine residues at its apex. These cysteine residues serve as a dimerization domain and bind a Zn(2+) cation in a tetrathiolate coordination complex known as the zinc-hook. Mutation of the zinc-hook in bacteriophage T4 is lethal, indicating the ability to bind Zn(2+) is critical for the functioning of the MR complex. In vitro, we found that complex formation between Rad50 and a peptide corresponding to the C-terminal domain of Mre11 enhances the ATPase activity of Rad50, supporting the hypothesis that the coiled-coil is a major conduit for communication between Mre11 and Rad50. We constructed mutations to perturb this domain in the bacteriophage T4 Rad50 homolog. Deletion of the Rad50 coiled-coil and zinc-hook eliminates Mre11 binding and ATPase activation but does not affect its basal activity. Mutation of the zinc-hook or disruption of the coiled-coil does not affect Mre11 or DNA binding, but their activation of Rad50 ATPase activity is abolished. Although these mutants excise a single nucleotide at a normal rate, they lack processivity and have reduced repetitive exonuclease rates. Restricting the mobility of the coiled-coil eliminates ATPase activation and repetitive exonuclease activity, but the ability to support single nucleotide excision is retained. These results suggest that the coiled-coiled domain adopts at least two conformations throughout the ATPase/nuclease cycle, with one conformation supporting enhanced ATPase activity and processivity and the other supporting nucleotide excision.
Collapse
Affiliation(s)
- Tasida Barfoot
- From the Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011 and
| | - Timothy J Herdendorf
- From the Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011 and
| | - Bryanna R Behning
- From the Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011 and
| | - Bradley A Stohr
- the Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Yang Gao
- From the Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011 and
| | - Kenneth N Kreuzer
- the Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Scott W Nelson
- From the Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011 and
| |
Collapse
|
6
|
Kinoshita E, van Rossum-Fikkert S, Sanchez H, Kertokalio A, Wyman C. Human RAD50 makes a functional DNA-binding complex. Biochimie 2015; 113:47-53. [PMID: 25828805 DOI: 10.1016/j.biochi.2015.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/20/2015] [Indexed: 11/17/2022]
Abstract
The MRE11-RAD50-NBS1 (MRN) complex has several distinct functions in DNA repair including important roles in both non-homologous end-joining (NHEJ) and homologous recombination (HR). The biochemical activities of MR(N) have been well characterized implying specific functional roles for the components. The arrangement of proteins in the complex implies interdependence of their biochemical activities making it difficult to separate specific functions. We obtained purified human RAD50 and observed that it binds ATP, undergoes ATP-dependent conformational changes as well as having ATPase activity. Scanning force microscopy analysis clearly showed that RAD50 binds DNA although not as oligomers. RAD50 alone was not functional in tethering DNA molecules. ATP increased formation of RAD50 multimers which were however globular lacking extended coiled coils, in contrast to the MR complex where ATP induced oligomers have obvious coiled coils protruding from a central domain. These results suggest that MRE11 is important in maintaining the structural arrangement of RAD50 in the protein complex and perhaps has a role in reinforcing proper alignment of the coiled coils in the ATP-bound state.
Collapse
Affiliation(s)
- Eri Kinoshita
- Department of Genetics, Cancer Genomics Center, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Sari van Rossum-Fikkert
- Department of Genetics, Cancer Genomics Center, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Humberto Sanchez
- Department of Genetics, Cancer Genomics Center, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Aryandi Kertokalio
- Department of Genetics, Cancer Genomics Center, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Claire Wyman
- Department of Genetics, Cancer Genomics Center, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands; Department of Radiation Oncology, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Interdependence of the rad50 hook and globular domain functions. Mol Cell 2015; 57:479-91. [PMID: 25601756 DOI: 10.1016/j.molcel.2014.12.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/27/2014] [Accepted: 12/08/2014] [Indexed: 11/24/2022]
Abstract
Rad50 contains a conserved Zn(2+) coordination domain (the Rad50 hook) that functions as a homodimerization interface. Hook ablation phenocopies Rad50 deficiency in all respects. Here, we focused on rad50 mutations flanking the Zn(2+)-coordinating hook cysteines. These mutants impaired hook-mediated dimerization, but recombination between sister chromatids was largely unaffected. This may reflect that cohesin-mediated sister chromatid interactions are sufficient for double-strand break repair. However, Mre11 complex functions specified by the globular domain, including Tel1 (ATM) activation, nonhomologous end joining, and DNA double-strand break end resection were affected, suggesting that dimerization exerts a broad influence on Mre11 complex function. These phenotypes were suppressed by mutations within the coiled-coil and globular ATPase domains, suggesting a model in which conformational changes in the hook and globular domains are transmitted via the extended coils of Rad50. We propose that transmission of spatial information in this manner underlies the regulation of Mre11 complex functions.
Collapse
|
8
|
Al-Ahmadie H, Iyer G, Hohl M, Asthana S, Inagaki A, Schultz N, Hanrahan AJ, Scott SN, Brannon AR, McDermott GC, Pirun M, Ostrovnaya I, Kim P, Socci ND, Viale A, Schwartz GK, Reuter V, Bochner BH, Rosenberg JE, Bajorin DF, Berger MF, Petrini JHJ, Solit DB, Taylor BS. Synthetic lethality in ATM-deficient RAD50-mutant tumors underlies outlier response to cancer therapy. Cancer Discov 2014; 4:1014-21. [PMID: 24934408 PMCID: PMC4155059 DOI: 10.1158/2159-8290.cd-14-0380] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
UNLABELLED Metastatic solid tumors are almost invariably fatal. Patients with disseminated small-cell cancers have a particularly unfavorable prognosis, with most succumbing to their disease within two years. Here, we report on the genetic and functional analysis of an outlier curative response of a patient with metastatic small-cell cancer to combined checkpoint kinase 1 (CHK1) inhibition and DNA-damaging chemotherapy. Whole-genome sequencing revealed a clonal hemizygous mutation in the Mre11 complex gene RAD50 that attenuated ATM signaling which in the context of CHK1 inhibition contributed, via synthetic lethality, to extreme sensitivity to irinotecan. As Mre11 mutations occur in a diversity of human tumors, the results suggest a tumor-specific combination therapy strategy in which checkpoint inhibition in combination with DNA-damaging chemotherapy is synthetically lethal in tumor cells but not normal cells with somatic mutations that impair Mre11 complex function. SIGNIFICANCE Strategies to effect deep and lasting responses to cancer therapy in patients with metastatic disease have remained difficult to attain, especially in early-phase clinical trials. Here, we present an in-depth genomic and functional genetic analysis identifying RAD50 hypomorphism as a contributing factor to a curative response to systemic combination therapy in a patient with recurrent, metastatic small-cell cancer.
Collapse
Affiliation(s)
- Hikmat Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gopa Iyer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York. Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Marcel Hohl
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Saurabh Asthana
- Department of Medicine, University of California, San Francisco, California. Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Akiko Inagaki
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nikolaus Schultz
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Aphrothiti J Hanrahan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sasinya N Scott
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - A Rose Brannon
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gregory C McDermott
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mono Pirun
- Bioinformatics Core Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Irina Ostrovnaya
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Philip Kim
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nicholas D Socci
- Bioinformatics Core Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Agnes Viale
- Genomics Core Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gary K Schwartz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Victor Reuter
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bernard H Bochner
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jonathan E Rosenberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Dean F Bajorin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Michael F Berger
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York. Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John H J Petrini
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - David B Solit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York. Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Medicine, Weill Cornell Medical College, New York, New York.
| | - Barry S Taylor
- Department of Medicine, University of California, San Francisco, California. Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California. Department of Epidemiology and Biostatistics, University of California, San Francisco, California.
| |
Collapse
|
9
|
Gao Y, Nelson SW. Autoinhibition of bacteriophage T4 Mre11 by its C-terminal domain. J Biol Chem 2014; 289:26505-26513. [PMID: 25077970 DOI: 10.1074/jbc.m114.583625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mre11 and Rad50 form a stable complex (MR) and work cooperatively in repairing DNA double strand breaks. In the bacteriophage T4, Rad50 (gene product 46) enhances the nuclease activity of Mre11 (gene product 47), and Mre11 and DNA in combination stimulate the ATPase activity of Rad50. The structural basis for the cross-activation of the MR complex has been elusive. Various crystal structures of the MR complex display limited protein-protein interfaces that mainly exist between the C terminus of Mre11 and the coiled-coil domain of Rad50. To test the role of the C-terminal Rad50 binding domain (RBD) in Mre11 activation, we constructed a series of C-terminal deletions and mutations in bacteriophage T4 Mre11. Deletion of the RBD in Mre11 eliminates Rad50 binding but only has moderate effect on its intrinsic nuclease activity; however, the additional deletion of the highly acidic flexible linker that lies between RBD and the main body of Mre11 increases the nuclease activity of Mre11 by 20-fold. Replacement of the acidic residues in the flexible linker with alanine elevates the Mre11 activity to the level of the MR complex when combined with deletion of RBD. Nuclease activity kinetics indicate that Rad50 association and deletion of the C terminus of Mre11 both enhance DNA substrate binding. Additionally, a short peptide that contains the flexible linker and RBD of Mre11 acts as an inhibitor of Mre11 nuclease activity. These results support a model where the Mre11 RBD and linker domain act as an autoinhibitory domain when not in complex with Rad50. Complex formation with Rad50 alleviates this inhibition due to the tight association of the RBD and the Rad50 coiled-coil.
Collapse
Affiliation(s)
- Yang Gao
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Scott W Nelson
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011.
| |
Collapse
|
10
|
Carvalho JFS, Kanaar R. Targeting homologous recombination-mediated DNA repair in cancer. Expert Opin Ther Targets 2014; 18:427-58. [PMID: 24491188 DOI: 10.1517/14728222.2014.882900] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION DNA is the target of many traditional non-specific chemotherapeutic drugs. New drugs or therapeutic approaches with a more rational and targeted component are mandatory to improve the success of cancer therapy. The homologous recombination (HR) pathway is an attractive target for the development of inhibitors because cancer cells rely heavily on HR for repair of DNA double-strand breaks resulting from chemotherapeutic treatments. Additionally, the discovery that poly(ADP)ribose polymerase-1 inhibitors selectively kill cells with genetic defects in HR has spurned an even greater interest in inhibitors of HR. AREAS COVERED HR drives the repair of broken DNA via numerous protein-mediated sequential DNA manipulations. Due to extensive number of steps and proteins involved, the HR pathway provides a rich pool of potential drug targets. This review discusses the latest developments concerning the strategies being explored to inhibit HR. Particular attention is given to the identification of small molecule inhibitors of key HR proteins, including the BRCA proteins and RAD51. EXPERT OPINION Current HR inhibitors are providing the basis for pharmaceutical development of more potent and specific inhibitors to be applied in mono- or combinatorial therapy regimes, while novel targets will be uncovered by experiments aimed to gain a deeper mechanistic understanding of HR and its subpathways.
Collapse
Affiliation(s)
- João F S Carvalho
- Erasmus MC Cancer Institute, Department of Genetics, Department of Radiation Oncology, Cancer Genomics Netherlands , PO Box 2040, 3000 CA Rotterdam , The Netherlands
| | | |
Collapse
|
11
|
Ghodke I, Muniyappa K. Processing of DNA double-stranded breaks and intermediates of recombination and repair by Saccharomyces cerevisiae Mre11 and its stimulation by Rad50, Xrs2, and Sae2 proteins. J Biol Chem 2013; 288:11273-86. [PMID: 23443654 DOI: 10.1074/jbc.m112.439315] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae RAD50, MRE11, and XRS2 genes are essential for telomere length maintenance, cell cycle checkpoint signaling, meiotic recombination, and DNA double-stranded break (DSB) repair via nonhomologous end joining and homologous recombination. The DSB repair pathways that draw upon Mre11-Rad50-Xrs2 subunits are complex, so their mechanistic features remain poorly understood. Moreover, the molecular basis of DSB end resection in yeast mre11-nuclease deficient mutants and Mre11 nuclease-independent activation of ATM in mammals remains unknown and adds a new dimension to many unanswered questions about the mechanism of DSB repair. Here, we demonstrate that S. cerevisiae Mre11 (ScMre11) exhibits higher binding affinity for single- over double-stranded DNA and intermediates of recombination and repair and catalyzes robust unwinding of substrates possessing a 3' single-stranded DNA overhang but not of 5' overhangs or blunt-ended DNA fragments. Additional evidence disclosed that ScMre11 nuclease activity is dispensable for its DNA binding and unwinding activity, thus uncovering the molecular basis underlying DSB end processing in mre11 nuclease deficient mutants. Significantly, Rad50, Xrs2, and Sae2 potentiate the DNA unwinding activity of Mre11, thus underscoring functional interaction among the components of DSB end repair machinery. Our results also show that ScMre11 by itself binds to DSB ends, then promotes end bridging of duplex DNA, and directly interacts with Sae2. We discuss the implications of these results in the context of an alternative mechanism for DSB end processing and the generation of single-stranded DNA for DNA repair and homologous recombination.
Collapse
Affiliation(s)
- Indrajeet Ghodke
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
12
|
Albrecht DW, Herdendorf TJ, Nelson SW. Disruption of the bacteriophage T4 Mre11 dimer interface reveals a two-state mechanism for exonuclease activity. J Biol Chem 2012; 287:31371-81. [PMID: 22798142 DOI: 10.1074/jbc.m112.392316] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Mre11-Rad50 (MR) complex is a central player in DNA repair and is implicated in the processing of DNA ends caused by double strand breaks. Recent crystal structures of the MR complex suggest that several conformational rearrangements occur during its ATP hydrolysis cycle. A comparison of the Mre11 dimer interface from these structures suggests that the interface is dynamic in nature and may adopt several different arrangements. To probe the functional significance of the Mre11 dimer interface, we have generated and characterized a dimer disruption Mre11 mutant (L101D-Mre11). Although L101D-Mre11 binds to Rad50 and dsDNA with affinity comparable with the wild-type enzyme, it does not activate the ATP hydrolysis activity of Rad50, suggesting that the allosteric communication between Mre11 and Rad50 has been interrupted. Additionally, the dsDNA exonuclease activity of the L101D-MR complex has been reduced by 10-fold under conditions where processive exonuclease activity is required. However, we unexpectedly found that under steady state conditions, the nuclease activity of the L101D-MR complex is significantly greater than that of the wild-type complex. Based on steady state and single-turnover nuclease assays, we have assigned the rate-determining step of the steady state nuclease reaction to be the productive assembly of the complex at the dsDNA end. Together, our data suggest that the Mre11 dimer interface adopts at least two different states during the exonuclease reaction.
Collapse
Affiliation(s)
- Dustin W Albrecht
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|