1
|
Sahota JS, Guleria K, Sambyal V. XRCC1 Polymorphisms p.Arg194Trp, p.Arg280His, and p.Arg399Gln, Polycyclic Aromatic Hydrocarbons, and Infertility: A Case-Control and In Silico Study. Biochem Genet 2025; 63:730-760. [PMID: 38514504 DOI: 10.1007/s10528-024-10743-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024]
Abstract
XRCC1 is involved in repair of single-strand breaks generated by mutagenic exposure. Polymorphisms within XRCC1 affect its ability to efficiently repair DNA damage. Polycyclic aromatic hydrocarbons or PAHs are genotoxic compounds which form bulky DNA adducts that are linked with infertility. Few reports suggest combined role of XRCC1 polymorphisms and PAHs in infertility. Present study investigates association of three XRCC1 polymorphisms (p.Arg194Trp, p.Arg280His, p.Arg399Gln) with male and female infertility in a North-West Indian population using case-control approach. Additionally, in silico approach has been used to predict whether XRCC1 polymorphisms effect interaction of XRCC1 with different PAHs. For case-control study, XRCC1 polymorphisms were screened in peripheral blood samples of age- and gender-matched 201 infertile cases (♂-100, ♀-101) and 201 fertile controls (♂-100, ♀-101) using PCR-RFLP method. For in silico study, AutoDock v4.2.6 was used for molecular docking of B[a]P, BPDE-I, ( ±)-anti-BPDE, DB[a,l]P, 1-N, 2-N, 1-OHP, 2-OHF with XRCC1 and assess effect of XRCC1 polymorphisms on their interaction. In case-control study, statistical analysis showed association of XRCC1 p.Arg280His GA genotype (p = 0.027), A allele (p = 0.019) with reduced risk of male infertility. XRCC1 p.Arg399Gln AA genotype (p = 0.021), A allele (p = 0.014) were associated with reduced risk for female primary infertility. XRCC1 p.Arg194Trp T allele was associated with increased risk for female infertility (p = 0.035). In silico analysis showed XRCC1-PAH interaction with non-significant effect of XRCC1 polymorphisms on predicted binding. Therefore, present study concludes that XRCC1 polymorphism-modified risk for male and female infertility in North-West Indians without significant effect on predicted XRCC1-PAH interactions. This is the first report on XRCC1 in female infertility.
Collapse
Affiliation(s)
- Jatinder Singh Sahota
- Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India
| | - Kamlesh Guleria
- Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India
| | - Vasudha Sambyal
- Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India.
| |
Collapse
|
2
|
Maria de Oliveira Barboza M, Ferreira da Costa R, Paulo Por Deus Gomes J, Mário Rodríguez Burbano R, Goberlânio de Barros Silva P, Helena Barem Rabenhorst S. Host repair polymorphisms and H. pylori genes in gastric disease outcomes: Who are the guardian and villains? Gene 2025; 933:148977. [PMID: 39389328 DOI: 10.1016/j.gene.2024.148977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/30/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Gastric cancer (GC) is the fourth-leading cause of cancer-related mortality. The intestinal subtype of GC comes after the cascade of Correa, presenting H. pylori infection as the major etiological factor. One of the main mechanisms proposed for the progression from a more benign gastric lesion to cancer is DNA damage caused by chronic inflammation. Polymorphisms in DNA repair genes can lead to an imbalance of host DNA damage and repair, contributing to the development of GC. From there, we evaluated the risk of polymorphisms in DNA repair system genes in progressive gastric diseases and their association with the H. pylori genotype. This study included 504 patients from two public hospitals in Brazil's north and northeast regions. The samples were classified into active and inactive gastritis, metaplasia, and GC. Polymorphisms in the DNA repair genes MLH1-93G > A, APE1 2197 T > G, XRCC1 28,152 G > A, MGMT 533 A > G, and XRCC3 18,067C > T were investigated by RFLP-PCR and H. pylori genotype by PCR. Statistical analyses were conducted using EPINFO 7.0., SNPSTAT, and CART software. The XRCC1 (GA) polymorphic allele stood out because it was associated with a lower risk of more severe gastric disease progression. Haplotypes of XRCC1 (GA) associated with some genotypes of MGMT, XRCC3, MLH1, and APE1 also showed protection against the progression of gastric diseases. XRCC3 (CT) showed a decreased risk of gastric disease progression in women, while a risk 1.3x to GC was observed in the MLH1 (A) polymorphic allele. The interaction between H. pylori genes and the host showed that the H. pylori cagE gene was the most important virulence factor associated with a worse clinical outcome, even overlapping with the XRCC1 polymorphism, where the MLH1 polymorphism response varied according to vacA alleles. Our results show the relevance of XRCC1 G > A for genome integrity, sex influence, and interaction between H. pylori virulence factors and XRCC1 and MLH1 genotypes for gastric lesion outcomes in Brazilian populations.
Collapse
Affiliation(s)
- Morgana Maria de Oliveira Barboza
- Federal University of Ceará, Department of Pathology and Forensic Medicine, Coronel Nunes de Melo Street, 1315, Rodolfo Teófilo, Fortaleza, Ceará, Brazil.
| | - Reginaldo Ferreira da Costa
- Harold Juaçaba Diagnostic Center (HHJ) of the Hospital Instituto do Câncer do Ceará (ICC), Papi Júnior Street, 1222, Rodolfo Teófilo, Fortaleza, Ceará, Brazil
| | - João Paulo Por Deus Gomes
- Federal University of Ceará, Computer Science Department, Campus do Pici, Block 910, Fortaleza, Ceará, Brazil
| | - Rommel Mário Rodríguez Burbano
- Federal University of Pará, Human Cytogenetics Laboratory, Biological Science Institute, Augusto Correa Street, 01, Guamá, Belém, Pará, Brazil
| | - Paulo Goberlânio de Barros Silva
- Christus University Centre, Division of Oral and Maxillofacial Surgery, School of Dentistry, Padre Antônio Tomás Avenue 3404, Fortaleza, Ceará, Brazil
| | - Silvia Helena Barem Rabenhorst
- Federal University of Ceará, Department of Pathology and Forensic Medicine, Coronel Nunes de Melo Street, 1315, Rodolfo Teófilo, Fortaleza, Ceará, Brazil.
| |
Collapse
|
3
|
McPherson KS, Korzhnev DM. Targeting protein-protein interactions in the DNA damage response pathways for cancer chemotherapy. RSC Chem Biol 2021; 2:1167-1195. [PMID: 34458830 PMCID: PMC8342002 DOI: 10.1039/d1cb00101a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/20/2021] [Indexed: 12/11/2022] Open
Abstract
Cellular DNA damage response (DDR) is an extensive signaling network that orchestrates DNA damage recognition, repair and avoidance, cell cycle progression and cell death. DDR alteration is a hallmark of cancer, with the deficiency in one DDR capability often compensated by a dependency on alternative pathways endowing cancer cells with survival and growth advantage. Targeting these DDR pathways has provided multiple opportunities for the development of cancer therapies. Traditional drug discovery has mainly focused on catalytic inhibitors that block enzyme active sites, which limits the number of potential drug targets within the DDR pathways. This review article describes the emerging approach to the development of cancer therapeutics targeting essential protein-protein interactions (PPIs) in the DDR network. The overall strategy for the structure-based design of small molecule PPI inhibitors is discussed, followed by an overview of the major DNA damage sensing, DNA repair, and DNA damage tolerance pathways with a specific focus on PPI targets for anti-cancer drug design. The existing small molecule inhibitors of DDR PPIs are summarized that selectively kill cancer cells and/or sensitize cancers to front-line genotoxic therapies, and a range of new PPI targets are proposed that may lead to the development of novel chemotherapeutics.
Collapse
Affiliation(s)
- Kerry Silva McPherson
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center Farmington CT 06030 USA +1 860 679 3408 +1 860 679 2849
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center Farmington CT 06030 USA +1 860 679 3408 +1 860 679 2849
| |
Collapse
|
4
|
Chatterjee N, D’Souza S, Shabab M, Harris CA, Hilinski GJ, Verdine GL, Walker GC. A stapled POL κ peptide targets REV1 to inhibit mutagenic translesion synthesis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:830-836. [PMID: 32573829 PMCID: PMC8057520 DOI: 10.1002/em.22395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/06/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Stapled α-helical RIR (Rev1-interacting region) peptides of DNA POL κ bind more effectively to the RIR-interface of the C-terminal recruitment domain of the translesion synthesis DNA polymerase Rev1 than unstapled peptide. The tightest-binding stapled peptide translocates into cells and enhances the cytotoxicity of DNA damaging agents while reducing mutagenesis. Drugs with these characteristics could potentially serve as adjuvants to improve chemotherapy and reduce acquired resistance by inhibiting Rev1-dependent mutagenic translesion synthesis.
Collapse
Affiliation(s)
| | - Sanjay D’Souza
- Department of Biology, MIT, Cambridge MA 02139
- CRISPR Therapeutics, 200 Sidney St, Cambridge MA 02139
| | | | | | | | - Gregory L. Verdine
- Department of Stem Cell and Regenerative Medicine, Harvard University Cambridge 02138
| | - Graham C. Walker
- Department of Biology, MIT, Cambridge MA 02139
- Koch Institute, MIT, Cambridge MA 02138
| |
Collapse
|
5
|
Kim K, Min J, Kirby TW, Gabel SA, Pedersen LC, London RE. Ligand binding characteristics of the Ku80 von Willebrand domain. DNA Repair (Amst) 2020; 85:102739. [PMID: 31733588 PMCID: PMC7495496 DOI: 10.1016/j.dnarep.2019.102739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/18/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022]
Abstract
The N-terminal von Willebrand domain of Ku80 supports interactions with a Ku binding motif (KBM) that has been identified in at least three other DNA repair proteins: the non-homologous end joining (NHEJ) scaffold APLF, the modulator of retrovirus infection, MRI, and the Werner syndrome protein (WRN). A second, more recently identified Ku binding motif present in XLF and several other proteins (KBMX) has also been reported to interact with this domain. The isolated Ku80 von Willebrand antigen domain (vWA) from Xenopus laevis has a sequence that is 60% identical with the human domain, is readily expressed and has been used to investigate these interactions. Structural characterization of the complexes formed with the KBM motifs in human APLF, MRI, and WRN identify a conserved binding site that is consistent with previously-reported mutational studies. In contrast with the KBM binding site, structural studies indicate that the KBMX site is occluded by a distorted helix. Fluorescence polarization and 19F NMR studies of a fluorinated XLF C-terminal peptide failed to indicate any interaction with the frog vWA. It was hypothesized that availability of this binding site is conditional, i.e., dependent on specific experimental conditions or other repair factors to make the site available for binding. Modulating the fraction of KBMX-accessible binding site mutationally demonstrated that the more open site is capable of binding the KBMXXLF motif peptide. It is suggested that the conditional nature of KBMX binding limits formation of non-productive complexes so that activation-dependent site availability can more optimally support advancing the synapsis process.
Collapse
Affiliation(s)
- Kyungmin Kim
- Genome Integrity and Structural Biology Laboratory, National Institute of Environment and Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Jungki Min
- Genome Integrity and Structural Biology Laboratory, National Institute of Environment and Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Thomas W Kirby
- Genome Integrity and Structural Biology Laboratory, National Institute of Environment and Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Scott A Gabel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environment and Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environment and Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Robert E London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environment and Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
6
|
Mok MCY, Campalans A, Pillon MC, Guarné A, Radicella JP, Junop MS. Identification of an XRCC1 DNA binding activity essential for retention at sites of DNA damage. Sci Rep 2019; 9:3095. [PMID: 30816207 PMCID: PMC6395731 DOI: 10.1038/s41598-019-39543-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/14/2019] [Indexed: 01/21/2023] Open
Abstract
Repair of two major forms of DNA damage, single strand breaks and base modifications, are dependent on XRCC1. XRCC1 orchestrates these repair processes by temporally and spatially coordinating interactions between several other repair proteins. Here we show that XRCC1 contains a central DNA binding domain (CDB, residues 219–415) encompassing its first BRCT domain. In contrast to the N-terminal domain of XRCC1, which has been reported to mediate damage sensing in vitro, we demonstrate that the DNA binding module identified here lacks binding specificity towards DNA containing nicks or gaps. Alanine substitution of residues within the CDB of XRCC1 disrupt DNA binding in vitro and lead to a significant reduction in XRCC1 retention at DNA damage sites without affecting initial recruitment. Interestingly, reduced retention at sites of DNA damage is associated with an increased rate of repair. These findings suggest that DNA binding activity of XRCC1 plays a significant role in retention at sites of damage and the rate at which damage is repaired.
Collapse
Affiliation(s)
- Mac C Y Mok
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S4K1, Canada
| | - Anna Campalans
- Institute of Cellular and Molecular Radiobiology, CEA, UMR967 INSERM, F-92265, Fontenay aux Roses, France
| | - Monica C Pillon
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S4K1, Canada
| | - Alba Guarné
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S4K1, Canada
| | - J Pablo Radicella
- Institute of Cellular and Molecular Radiobiology, CEA, UMR967 INSERM, F-92265, Fontenay aux Roses, France
| | - Murray S Junop
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S4K1, Canada. .,Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A5C1, Canada. .,Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A5C1, Canada.
| |
Collapse
|
7
|
Mani RS, Mermershtain I, Abdou I, Fanta M, Hendzel MJ, Glover JNM, Weinfeld M. Domain analysis of PNKP-XRCC1 interactions: Influence of genetic variants of XRCC1. J Biol Chem 2018; 294:520-530. [PMID: 30446622 DOI: 10.1074/jbc.ra118.004262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/05/2018] [Indexed: 12/28/2022] Open
Abstract
Polynucleotide kinase/phosphatase (PNKP) and X-ray repair cross-complementing 1 (XRCC1) are key proteins in the single-strand DNA break repair pathway. Phosphorylated XRCC1 stimulates PNKP by binding to its forkhead-associated (FHA) domain, whereas nonphosphorylated XRCC1 stimulates PNKP by interacting with the PNKP catalytic domain. Here, we have further studied the interactions between these two proteins, including two variants of XRCC1 (R194W and R280H) arising from single-nucleotide polymorphisms (SNPs) that have been associated with elevated cancer risk in some reports. We observed that interaction of the PNKP FHA domain with phosphorylated XRCC1 extends beyond the immediate, well-characterized phosphorylated region of XRCC1 (residues 515-526). We also found that an XRCC1 fragment, comprising residues 166-436, binds tightly to PNKP and DNA and efficiently activates PNKP's kinase activity. However, interaction of either of the SNP-derived variants of this fragment with PNKP was considerably weaker, and their stimulation of PNKP was severely reduced, although they still could bind DNA effectively. Laser microirradiation revealed reduced recruitment of PNKP to damaged DNA in cells expressing either XRCC1 variant compared with PNKP recruitment in cells expressing WT XRCC1 even though WT and variant XRCC1s were equally efficient at localizing to the damaged DNA. These findings suggest that the elevated risk of cancer associated with these XRCC1 SNPs reported in some studies may be due in part to the reduced ability of these XRCC1 variants to recruit PNKP to damaged DNA.
Collapse
Affiliation(s)
- Rajam S Mani
- From the Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2 and
| | - Inbal Mermershtain
- the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Ismail Abdou
- From the Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2 and
| | - Mesfin Fanta
- From the Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2 and
| | - Michael J Hendzel
- From the Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2 and
| | - J N Mark Glover
- the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Michael Weinfeld
- From the Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2 and
| |
Collapse
|
8
|
Ozen Z, Dash RC, McCarthy KR, Chow SA, Rizzo AA, Korzhnev DM, Hadden MK. Small molecule scaffolds that disrupt the Rev1-CT/RIR protein-protein interaction. Bioorg Med Chem 2018; 26:4301-4309. [DOI: 10.1016/j.bmc.2018.07.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/10/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
|
9
|
Cui G, Botuyan MV, Mer G. Structural Basis for the Interaction of Mutasome Assembly Factor REV1 with Ubiquitin. J Mol Biol 2018; 430:2042-2050. [PMID: 29778604 DOI: 10.1016/j.jmb.2018.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 11/24/2022]
Abstract
REV1 is an evolutionarily conserved translesion synthesis (TLS) DNA polymerase and an assembly factor key for the recruitment of other TLS polymerases to DNA damage sites. REV1-mediated recognition of ubiquitin in the proliferative cell nuclear antigen is thought to be the trigger for TLS activation. Here we report the solution NMR structure of a 108-residue fragment of human REV1 encompassing the two putative ubiquitin-binding motifs UBM1 and UBM2 in complex with ubiquitin. While in mammals UBM1 and UBM2 are both required for optimal association of REV1 with replication factories after DNA damage, we show that only REV1 UBM2 binds ubiquitin. Structure-guided mutagenesis in Saccharomyces cerevisiae further highlights the importance of UBM2 for REV1-mediated mutagenesis and DNA damage tolerance.
Collapse
Affiliation(s)
- Gaofeng Cui
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Maria Victoria Botuyan
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
10
|
Kim K, Pedersen LC, Kirby TW, DeRose EF, London RE. Characterization of the APLF FHA-XRCC1 phosphopeptide interaction and its structural and functional implications. Nucleic Acids Res 2017; 45:12374-12387. [PMID: 29059378 PMCID: PMC5716189 DOI: 10.1093/nar/gkx941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/05/2017] [Indexed: 02/07/2023] Open
Abstract
Aprataxin and PNKP-like factor (APLF) is a DNA repair factor containing a forkhead-associated (FHA) domain that supports binding to the phosphorylated FHA domain binding motifs (FBMs) in XRCC1 and XRCC4. We have characterized the interaction of the APLF FHA domain with phosphorylated XRCC1 peptides using crystallographic, NMR, and fluorescence polarization studies. The FHA–FBM interactions exhibit significant pH dependence in the physiological range as a consequence of the atypically high pK values of the phosphoserine and phosphothreonine residues and the preference for a dianionic charge state of FHA-bound pThr. These high pK values are characteristic of the polyanionic peptides typically produced by CK2 phosphorylation. Binding affinity is greatly enhanced by residues flanking the crystallographically-defined recognition motif, apparently as a consequence of non-specific electrostatic interactions, supporting the role of XRCC1 in nuclear cotransport of APLF. The FHA domain-dependent interaction of XRCC1 with APLF joins repair scaffolds that support single-strand break repair and non-homologous end joining (NHEJ). It is suggested that for double-strand DNA breaks that have initially formed a complex with PARP1 and its binding partner XRCC1, this interaction acts as a backup attempt to intercept the more error-prone alternative NHEJ repair pathway by recruiting Ku and associated NHEJ factors.
Collapse
Affiliation(s)
- Kyungmin Kim
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Thomas W Kirby
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Eugene F DeRose
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Robert E London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
11
|
Bj Rås KØ, Sousa MML, Sharma A, Fonseca DM, S Gaard CK, Bj Rås M, Otterlei M. Monitoring of the spatial and temporal dynamics of BER/SSBR pathway proteins, including MYH, UNG2, MPG, NTH1 and NEIL1-3, during DNA replication. Nucleic Acids Res 2017; 45:8291-8301. [PMID: 28575236 PMCID: PMC5737410 DOI: 10.1093/nar/gkx476] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/15/2017] [Indexed: 12/03/2022] Open
Abstract
Base lesions in DNA can stall the replication machinery or induce mutations if bypassed. Consequently, lesions must be repaired before replication or in a post-replicative process to maintain genomic stability. Base excision repair (BER) is the main pathway for repair of base lesions and is known to be associated with DNA replication, but how BER is organized during replication is unclear. Here we coupled the iPOND (isolation of proteins on nascent DNA) technique with targeted mass-spectrometry analysis, which enabled us to detect all proteins required for BER on nascent DNA and to monitor their spatiotemporal orchestration at replication forks. We demonstrate that XRCC1 and other BER/single-strand break repair (SSBR) proteins are enriched in replisomes in unstressed cells, supporting a cellular capacity of post-replicative BER/SSBR. Importantly, we identify for the first time the DNA glycosylases MYH, UNG2, MPG, NTH1, NEIL1, 2 and 3 on nascent DNA. Our findings suggest that a broad spectrum of DNA base lesions are recognized and repaired by BER in a post-replicative process.
Collapse
Affiliation(s)
- Karine Ø Bj Rås
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Mirta M L Sousa
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway.,The Central Norway Regional Health Authority, N-7501 Stj⊘rdal, Norway
| | - Animesh Sharma
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway.,The Central Norway Regional Health Authority, N-7501 Stj⊘rdal, Norway.,Proteomics and Metabolomics Core Facility (PROMEC), Department of Cancer Research and Molecular Medicine, NTNU, N-7491 Trondheim, Norway
| | - Davi M Fonseca
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway.,The Central Norway Regional Health Authority, N-7501 Stj⊘rdal, Norway.,Proteomics and Metabolomics Core Facility (PROMEC), Department of Cancer Research and Molecular Medicine, NTNU, N-7491 Trondheim, Norway
| | - Caroline K S Gaard
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Magnar Bj Rås
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway.,Department of Microbiology, Oslo University Hospital and University of Oslo, N-0027 Oslo, Norway
| | - Marit Otterlei
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| |
Collapse
|
12
|
Breslin C, Mani RS, Fanta M, Hoch N, Weinfeld M, Caldecott KW. The Rev1 interacting region (RIR) motif in the scaffold protein XRCC1 mediates a low-affinity interaction with polynucleotide kinase/phosphatase (PNKP) during DNA single-strand break repair. J Biol Chem 2017; 292:16024-16031. [PMID: 28821613 PMCID: PMC5625035 DOI: 10.1074/jbc.m117.806638] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/15/2017] [Indexed: 11/22/2022] Open
Abstract
The scaffold protein X-ray repair cross-complementing 1 (XRCC1) interacts with multiple enzymes involved in DNA base excision repair and single-strand break repair (SSBR) and is important for genetic integrity and normal neurological function. One of the most important interactions of XRCC1 is that with polynucleotide kinase/phosphatase (PNKP), a dual-function DNA kinase/phosphatase that processes damaged DNA termini and that, if mutated, results in ataxia with oculomotor apraxia 4 (AOA4) and microcephaly with early-onset seizures and developmental delay (MCSZ). XRCC1 and PNKP interact via a high-affinity phosphorylation-dependent interaction site in XRCC1 and a forkhead-associated domain in PNKP. Here, we identified using biochemical and biophysical approaches a second PNKP interaction site in XRCC1 that binds PNKP with lower affinity and independently of XRCC1 phosphorylation. However, this interaction nevertheless stimulated PNKP activity and promoted SSBR and cell survival. The low-affinity interaction site required the highly conserved Rev1-interacting region (RIR) motif in XRCC1 and included three critical and evolutionarily invariant phenylalanine residues. We propose a bipartite interaction model in which the previously identified high-affinity interaction acts as a molecular tether, holding XRCC1 and PNKP together and thereby promoting the low-affinity interaction identified here, which then stimulates PNKP directly.
Collapse
Affiliation(s)
- Claire Breslin
- From the Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Science Park Road, Falmer, Brighton BN19RQ, United Kingdom
| | - Rajam S Mani
- the Department of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada, and
| | - Mesfin Fanta
- the Department of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada, and
| | - Nicolas Hoch
- From the Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Science Park Road, Falmer, Brighton BN19RQ, United Kingdom.,the CAPES Foundation, Ministry of Education of Brazil, Brasilia/DF 70040-020, Brazil
| | - Michael Weinfeld
- the Department of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada, and
| | - Keith W Caldecott
- From the Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Science Park Road, Falmer, Brighton BN19RQ, United Kingdom,
| |
Collapse
|
13
|
Fujii N. Potential Strategies to Target Protein-Protein Interactions in the DNA Damage Response and Repair Pathways. J Med Chem 2017; 60:9932-9959. [PMID: 28654754 DOI: 10.1021/acs.jmedchem.7b00358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review article discusses some insights about generating novel mechanistic inhibitors of the DNA damage response and repair (DDR) pathways by focusing on protein-protein interactions (PPIs) of the key DDR components. General requirements for PPI strategies, such as selecting the target PPI site on the basis of its functionality, are discussed first. Next, on the basis of functional rationale and biochemical feasibility to identify a PPI inhibitor, 26 PPIs in DDR pathways (BER, MMR, NER, NHEJ, HR, TLS, and ICL repair) are specifically discussed for inhibitor discovery to benefit cancer therapies using a DNA-damaging agent.
Collapse
Affiliation(s)
- Naoaki Fujii
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital , 262 Danny Thomas Place, MS1000, Memphis, Tennessee 38105, United States
| |
Collapse
|
14
|
Zhao L, Washington MT. Translesion Synthesis: Insights into the Selection and Switching of DNA Polymerases. Genes (Basel) 2017; 8:genes8010024. [PMID: 28075396 PMCID: PMC5295019 DOI: 10.3390/genes8010024] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 01/05/2023] Open
Abstract
DNA replication is constantly challenged by DNA lesions, noncanonical DNA structures and difficult-to-replicate DNA sequences. Two major strategies to rescue a stalled replication fork and to ensure continuous DNA synthesis are: (1) template switching and recombination-dependent DNA synthesis; and (2) translesion synthesis (TLS) using specialized DNA polymerases to perform nucleotide incorporation opposite DNA lesions. The former pathway is mainly error-free, and the latter is error-prone and a major source of mutagenesis. An accepted model of translesion synthesis involves DNA polymerase switching steps between a replicative DNA polymerase and one or more TLS DNA polymerases. The mechanisms that govern the selection and exchange of specialized DNA polymerases for a given DNA lesion are not well understood. In this review, recent studies concerning the mechanisms of selection and switching of DNA polymerases in eukaryotic systems are summarized.
Collapse
Affiliation(s)
- Linlin Zhao
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA.
- Science of Advanced Materials Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - M Todd Washington
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
15
|
Boehm EM, Washington MT. R.I.P. to the PIP: PCNA-binding motif no longer considered specific: PIP motifs and other related sequences are not distinct entities and can bind multiple proteins involved in genome maintenance. Bioessays 2016; 38:1117-1122. [PMID: 27539869 DOI: 10.1002/bies.201600116] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Many proteins responsible for genome maintenance interact with one another via short sequence motifs. The best known of these are PIP motifs, which mediate interactions with the replication protein PCNA. Others include RIR motifs, which bind the translesion synthesis protein Rev1, and MIP motifs, which bind the mismatch repair protein Mlh1. Although these motifs have similar consensus sequences, they have traditionally been viewed as separate motifs, each with their own target protein. In this article, we review several recent studies that challenge this view. Taken together, they imply that these different motifs are not distinct entities. Instead, there is a single, broader class of motifs, which we call "PIP-like" motifs, which have overlapping specificities and are capable of binding multiple target proteins. Given this, we must reassess the role of these motifs in forming the network of interacting proteins responsible for genome maintenance.
Collapse
Affiliation(s)
| | - M Todd Washington
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
16
|
Korzhnev DM, Hadden MK. Targeting the Translesion Synthesis Pathway for the Development of Anti-Cancer Chemotherapeutics. J Med Chem 2016; 59:9321-9336. [PMID: 27362876 DOI: 10.1021/acs.jmedchem.6b00596] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Human cells possess tightly controlled mechanisms to rescue DNA replication following DNA damage caused by environmental and endogenous carcinogens using a set of low-fidelity translesion synthesis (TLS) DNA polymerases. These polymerases can copy over replication blocking DNA lesions while temporarily leaving them unrepaired, preventing cell death at the expense of increasing mutation rates and contributing to the onset and progression of cancer. In addition, TLS has been implicated as a major cellular mechanism promoting acquired resistance to genotoxic chemotherapy. Owing to its central role in mutagenesis and cell survival after DNA damage, inhibition of the TLS pathway has emerged as a potential target for the development of anticancer agents. This review will recap our current understanding of the structure and regulation of DNA polymerase complexes that mediate TLS and describe how this knowledge is beginning to translate into the development of small molecule TLS inhibitors.
Collapse
Affiliation(s)
- Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center , Farmington, Connecticut 06030, United States
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut , 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269, United States
| |
Collapse
|
17
|
Pustovalova Y, Magalhães MTQ, D'Souza S, Rizzo AA, Korza G, Walker GC, Korzhnev DM. Interaction between the Rev1 C-Terminal Domain and the PolD3 Subunit of Polζ Suggests a Mechanism of Polymerase Exchange upon Rev1/Polζ-Dependent Translesion Synthesis. Biochemistry 2016; 55:2043-53. [PMID: 26982350 DOI: 10.1021/acs.biochem.5b01282] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Translesion synthesis (TLS) is a mutagenic branch of cellular DNA damage tolerance that enables bypass replication over DNA lesions carried out by specialized low-fidelity DNA polymerases. The replicative bypass of most types of DNA damage is performed in a two-step process of Rev1/Polζ-dependent TLS. In the first step, a Y-family TLS enzyme, typically Polη, Polι, or Polκ, inserts a nucleotide across a DNA lesion. In the second step, a four-subunit B-family DNA polymerase Polζ (Rev3/Rev7/PolD2/PolD3 complex) extends the distorted DNA primer-template. The coordinated action of error-prone TLS enzymes is regulated through their interactions with the two scaffold proteins, the sliding clamp PCNA and the TLS polymerase Rev1. Rev1 interactions with all other TLS enzymes are mediated by its C-terminal domain (Rev1-CT), which can simultaneously bind the Rev7 subunit of Polζ and Rev1-interacting regions (RIRs) from Polη, Polι, or Polκ. In this work, we identified a previously unknown RIR motif in the C-terminal part of PolD3 subunit of Polζ whose interaction with the Rev1-CT is among the tightest mediated by RIR motifs. Three-dimensional structure of the Rev1-CT/PolD3-RIR complex determined by NMR spectroscopy revealed a structural basis for the relatively high affinity of this interaction. The unexpected discovery of PolD3-RIR motif suggests a mechanism of "inserter" to "extender" DNA polymerase switch upon Rev1/Polζ-dependent TLS, in which the PolD3-RIR binding to the Rev1-CT (i) helps displace the "inserter" Polη, Polι, or Polκ from its complex with Rev1, and (ii) facilitates assembly of the four-subunit "extender" Polζ through simultaneous interaction of Rev1-CT with Rev7 and PolD3 subunits.
Collapse
Affiliation(s)
- Yulia Pustovalova
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center , Farmington, Connecticut 06030, United States
| | - Mariana T Q Magalhães
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center , Farmington, Connecticut 06030, United States
| | - Sanjay D'Souza
- Department of Biology, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Alessandro A Rizzo
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center , Farmington, Connecticut 06030, United States
| | - George Korza
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center , Farmington, Connecticut 06030, United States
| | - Graham C Walker
- Department of Biology, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center , Farmington, Connecticut 06030, United States
| |
Collapse
|
18
|
Boehm EM, Powers KT, Kondratick CM, Spies M, Houtman JCD, Washington MT. The Proliferating Cell Nuclear Antigen (PCNA)-interacting Protein (PIP) Motif of DNA Polymerase η Mediates Its Interaction with the C-terminal Domain of Rev1. J Biol Chem 2016; 291:8735-44. [PMID: 26903512 DOI: 10.1074/jbc.m115.697938] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Indexed: 11/06/2022] Open
Abstract
Y-family DNA polymerases, such as polymerase η, polymerase ι, and polymerase κ, catalyze the bypass of DNA damage during translesion synthesis. These enzymes are recruited to sites of DNA damage by interacting with the essential replication accessory protein proliferating cell nuclear antigen (PCNA) and the scaffold protein Rev1. In most Y-family polymerases, these interactions are mediated by one or more conserved PCNA-interacting protein (PIP) motifs that bind in a hydrophobic pocket on the front side of PCNA as well as by conserved Rev1-interacting region (RIR) motifs that bind in a hydrophobic pocket on the C-terminal domain of Rev1. Yeast polymerase η, a prototypical translesion synthesis polymerase, binds both PCNA and Rev1. It possesses a single PIP motif but not an RIR motif. Here we show that the PIP motif of yeast polymerase η mediates its interactions both with PCNA and with Rev1. Moreover, the PIP motif of polymerase η binds in the hydrophobic pocket on the Rev1 C-terminal domain. We also show that the RIR motif of human polymerase κ and the PIP motif of yeast Msh6 bind both PCNA and Rev1. Overall, these findings demonstrate that PIP motifs and RIR motifs have overlapping specificities and can interact with both PCNA and Rev1 in structurally similar ways. These findings also suggest that PIP motifs are a more versatile protein interaction motif than previously believed.
Collapse
Affiliation(s)
| | | | | | | | - Jon C D Houtman
- Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | | |
Collapse
|
19
|
Abstract
Scaffold proteins play a central role in DNA repair by recruiting and organizing sets of enzymes required to perform multi-step repair processes. X-ray cross complementing group 1 protein (XRCC1) forms enzyme complexes optimized for single-strand break repair, but participates in other repair pathways as well. Available structural data for XRCC1 interactions is summarized and evaluated in terms of its proposed roles in DNA repair. Mutational approaches related to the abrogation of specific XRCC1 interactions are also discussed. Although substantial progress has been made in elucidating the structural basis for XRCC1 function, the molecular mechanisms of XRCC1 recruitment related to several proposed roles of the XRCC1 DNA repair complex remain undetermined.
Collapse
Affiliation(s)
- Robert E London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
20
|
Jansen JG, Tsaalbi-Shtylik A, de Wind N. Roles of mutagenic translesion synthesis in mammalian genome stability, health and disease. DNA Repair (Amst) 2015; 29:56-64. [PMID: 25655219 DOI: 10.1016/j.dnarep.2015.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/22/2014] [Accepted: 01/07/2015] [Indexed: 01/08/2023]
Abstract
Most spontaneous and DNA damage-induced nucleotide substitutions in eukaryotes depend on translesion synthesis polymerases Rev1 and Pol ζ, the latter consisting of the catalytic subunit Rev3 and the accessory protein Rev7. Here we review the regulation, and the biochemical and cellular functions, of Rev1/Pol ζ-dependent translesion synthesis. These are correlated with phenotypes of mouse models with defects in Rev1, Rev3 or Rev7. The data indicate that Rev1/Pol ζ-mediated translesion synthesis is important for adaptive immunity while playing paradoxical roles in oncogenesis. On the other hand, by enabling the replication of endogenously damaged templates, Rev1/Pol ζ -dependent translesion synthesis protects stem cells, thereby preventing features of ageing. In conclusion, Rev1/Pol ζ-dependent translesion synthesis at DNA helix-distorting nucleotide lesions orchestrates pleiotropic responses that determine organismal fitness and disease.
Collapse
Affiliation(s)
- Jacob G Jansen
- Department of Human Genetics, Leiden University Medical Center, PO Box 9600, 2300RC Leiden, The Netherlands
| | - Anastasia Tsaalbi-Shtylik
- Department of Human Genetics, Leiden University Medical Center, PO Box 9600, 2300RC Leiden, The Netherlands
| | - Niels de Wind
- Department of Human Genetics, Leiden University Medical Center, PO Box 9600, 2300RC Leiden, The Netherlands.
| |
Collapse
|
21
|
Dutta A, Yang C, Sengupta S, Mitra S, Hegde ML. New paradigms in the repair of oxidative damage in human genome: mechanisms ensuring repair of mutagenic base lesions during replication and involvement of accessory proteins. Cell Mol Life Sci 2015; 72:1679-98. [PMID: 25575562 DOI: 10.1007/s00018-014-1820-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 11/30/2022]
Abstract
Oxidized bases in the mammalian genome, which are invariably mutagenic due to their mispairing property, are continuously induced by endogenous reactive oxygen species and more abundantly after oxidative stress. Unlike bulky base adducts induced by UV and other environmental mutagens in the genome that block replicative DNA polymerases, oxidatively damaged bases such as 5-hydroxyuracil, produced by oxidative deamination of cytosine in the template strand, do not block replicative polymerases and thus need to be repaired prior to replication to prevent mutation. Following up our earlier studies, which showed that the Nei endonuclease VIII like 1 (NEIL1) DNA glycosylase, one of the five base excision repair (BER)-initiating enzymes in mammalian cells, has enhanced expression during the S-phase and higher affinity for replication fork-mimicking single-stranded (ss) DNA substrates, we recently provided direct experimental evidence for NEIL1's role in replicating template strand repair. The key requirement for this event, which we named as the 'cow-catcher' mechanism of pre-replicative BER, is NEIL1's non-productive binding (substrate binding without product formation) to the lesion base in ss DNA template to stall DNA synthesis, causing fork regression. Repair of the lesion in reannealed duplex is then carried out by NEIL1 in association with the DNA replication proteins. NEIL1 (and other BER-initiating enzymes) also interact with several accessory and non-canonical proteins including the heterogeneous nuclear ribonucleoprotein U and Y-box-binding protein 1 as well as high mobility group box 1 protein, whose precise roles in BER are still obscure. In this review, we have discussed the recent advances in our understanding of oxidative genome damage repair pathways with particular focus on the pre-replicative template strand repair and the role of scaffold factors like X-ray repairs cross-complementing protein 1 and poly (ADP-ribose) polymerase 1 and other accessory proteins guiding distinct BER sub-pathways.
Collapse
Affiliation(s)
- Arijit Dutta
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | | | | | | | | |
Collapse
|