1
|
Gamallat Y, Felipe Lima J, Seyedi S, Li Q, Rokne JG, Alhajj R, Ghosh S, Bismar TA. Exploring The Prognostic Significance of SET-Domain Containing 2 (SETD2) Expression in Advanced and Castrate-Resistant Prostate Cancer. Cancers (Basel) 2024; 16:1436. [PMID: 38611113 PMCID: PMC11010867 DOI: 10.3390/cancers16071436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
SET-domain containing 2 (SETD2) is a histone methyltransferase and an epigenetic modifier with oncogenic functionality. In the current study, we investigated the potential prognostic role of SETD2 in prostate cancer. A cohort of 202 patients' samples was assembled on tissue microarrays (TMAs) containing incidental, advanced, and castrate-resistant CRPCa cases. Our data showed significant elevated SETD2 expression in advanced and castrate-resistant disease (CRPCa) compared to incidental cases (2.53 ± 0.58 and 2.21 ± 0.63 vs. 1.9 ± 0.68; p < 0.001, respectively). Interestingly, the mean intensity of SETD2 expression in deceased vs. alive patients was also significantly different (2.31 ± 0.66 vs. 2 ± 0.68; p = 0.003, respectively). Overall, high SETD2 expression was found to be considered high risk and was significantly associated with poor prognosis and worse overall survival (OS) (HR 1.80; 95% CI: 1.28-2.53, p = 0.001) and lower cause specific survival (CSS) (HR 3.14; 95% CI: 1.94-5.08, p < 0.0001). Moreover, combining high-intensity SETD2 with PTEN loss resulted in lower OS (HR 2.12; 95% CI: 1.22-3.69, p = 0.008) and unfavorable CSS (HR 3.74; 95% CI: 1.67-8.34, p = 0.001). Additionally, high SETD2 intensity with ERG positive expression showed worse prognosis for both OS (HR 1.99, 95% CI 0.87-4.59; p = 0.015) and CSS (HR 2.14, 95% CI 0.98-4.68, p = 0.058). We also investigated the protein expression database TCPA, and our results showed that high SETD2 expression is associated with a poor prognosis. Finally, we performed TCGA PRAD gene set enrichment analysis (GSEA) data for SETD2 overexpression, and our data revealed a potential association with pathways involved in tumor progression such as the AMPK signaling pathway, the cAMP signaling pathway, and the PI3K-Akt signaling pathway, which are potentially associated with tumor progression, chemoresistance, and a poor prognosis.
Collapse
Affiliation(s)
- Yaser Gamallat
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (Y.G.); (J.F.L.); (S.S.)
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Joema Felipe Lima
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (Y.G.); (J.F.L.); (S.S.)
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sima Seyedi
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (Y.G.); (J.F.L.); (S.S.)
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Qiaowang Li
- Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada; (Q.L.)
| | - Jon George Rokne
- Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada; (Q.L.)
| | - Reda Alhajj
- Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada; (Q.L.)
- Department of Computer Engineering, Istanbul Medipol University, 34810 Istanbul, Turkey
- Department of Health Informatics, University of Southern Denmark, 5230 Odense, Denmark
| | - Sunita Ghosh
- Department of Medical Oncology, College of Health Sciences, University of Alberta, Edmonton, AB T6G 2R7, Canada
- Department of Public Health Sciences, Henry Ford Health, Detroit, MI 48202, USA
| | - Tarek A. Bismar
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (Y.G.); (J.F.L.); (S.S.)
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Tom Baker Cancer Center, Alberta Health Services, Calgary, AB T2N 4N1, Canada
- Prostate Cancer Centre, Alberta Health Services, Calgary, AB T2V 1P9, Canada
- Department of Pathology, Alberta Precision Labs, Calgary, AB T2V 1P9, Canada
| |
Collapse
|
2
|
Firnau MB, Plotz G, Zeuzem S, Brieger A. Key role of phosphorylation sites in ATPase domain and Linker region of MLH1 for DNA binding and functionality of MutLα. Sci Rep 2023; 13:12503. [PMID: 37532794 PMCID: PMC10397344 DOI: 10.1038/s41598-023-39750-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023] Open
Abstract
MutLα is essential for human DNA mismatch repair (MMR). It harbors a latent endonuclease, is responsible for recruitment of process associated proteins and is relevant for strand discrimination. Recently, we demonstrated that the MMR function of MutLα is regulated by phosphorylation of MLH1 at serine (S) 477. In the current study, we focused on S87 located in the ATPase domain of MLH1 and on S446, S456 and S477 located in its linker region. We analysed the phosphorylation-dependent impact of these amino acids on DNA binding, MMR ability and thermal stability of MutLα. We were able to demonstrate that phosphorylation at S87 of MLH1 inhibits DNA binding of MutLα. In addition, we detected that its MMR function seems to be regulated predominantly via phosphorylation of serines in the linker domain, which are also partially involved in the regulation of DNA binding. Furthermore, we found that the thermal stability of MutLα decreased in relation to its phosphorylation status implying that complete phosphorylation might lead to instability and degradation of MLH1. In summary, we showed here, for the first time, a phosphorylation-dependent regulation of DNA binding of MutLα and hypothesized that this might significantly impact its functional regulation during MMR in vivo.
Collapse
Affiliation(s)
- May-Britt Firnau
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Biomedical Research Laboratory, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Guido Plotz
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Biomedical Research Laboratory, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Stefan Zeuzem
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Biomedical Research Laboratory, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Angela Brieger
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Biomedical Research Laboratory, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| |
Collapse
|
3
|
MMR Deficiency Defines Distinct Molecular Subtype of Breast Cancer with Histone Proteomic Networks. Int J Mol Sci 2023; 24:ijms24065327. [PMID: 36982402 PMCID: PMC10049366 DOI: 10.3390/ijms24065327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Mismatch repair (MMR) alterations are important prognostic and predictive biomarkers in a variety of cancer subtypes, including colorectal and endometrial. However, in breast cancer (BC), the distinction and clinical significance of MMR are largely unknown. This may be due in part to the fact that genetic alterations in MMR genes are rare and only seen to occur in around 3% of BCs. In the present study, we analyzed TCGA data using a multi-sample protein–protein interaction (PPI) analysis tool, Proteinarium, and showed a distinct separation between specific MMR-deficient and -intact networks in a cohort of 994 BC patients. In the PPI networks specific to MMR deficiency, highly connected clusters of histone genes were identified. We also found the distribution of MMR-deficient BC to be more prevalent in HER2-enriched and triple-negative (TN) BC subtypes compared to luminal BCs. We recommend defining MMR-deficient BC by next-generation sequencing (NGS) when any somatic mutation is detected in one of the seven MMR genes.
Collapse
|
4
|
Chen X, Zhang G, Li P, Yu J, Kang L, Qin B, Wang Y, Wu J, Wang Y, Zhang J, Qin M, Guan H. SYVN1-mediated ubiquitination and degradation of MSH3 promotes the apoptosis of lens epithelial cells. FEBS J 2022; 289:5682-5696. [PMID: 35334159 DOI: 10.1111/febs.16447] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/24/2021] [Accepted: 03/24/2022] [Indexed: 12/29/2022]
Abstract
The pathology of age-related cataract (ARC) mainly involves the misfolding and aggregation of proteins, especially oxidative damage repair proteins, in the lens, induced by ultraviolet-B (UVB). MSH3, as a key member of the mismatch repair family, primarily maintains genome stability. However, the function of MSH3 and the mechanism by which cells maintain MSH3 proteostasis during cataractogenesis remains unknown. In the present study, the protein expression levels of MSH3 were found to be attenuated in ARC specimens and SRA01/04 cells under UVB exposure. The ectopic expression of MSH3 notably impeded UVB-induced apoptosis, whereas the knockdown of MSH3 promoted apoptosis. Protein half-life assay revealed that UVB irradiation accelerated the decline of MSH3 by ubiquitination and degradation. Subsequently, we found that E3 ubiquitin ligase synoviolin (SYVN1) interacted with MSH3 and promoted its ubiquitination and degradation. Of note, the expression and function of SYVN1 were contrary to those of MSH3 and SYVN1 regulated MSH3 protein degradation via the ubiquitin-proteasome pathway and the autophagy-lysosome pathway. Based on these findings, we propose a mechanism for ARC pathogenesis that involves SYVN1-mediated degradation of MSH3 via the ubiquitin-proteasome pathway and the autophagy-lysosome pathway, and suggest that interventions targeting SYVN1 might be a potential therapeutic strategy for ARC.
Collapse
Affiliation(s)
- Xiaojuan Chen
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Pengfei Li
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Jianfeng Yu
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Bai Qin
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Ying Wang
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Jian Wu
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Yong Wang
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Junfang Zhang
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Miaomiao Qin
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, China
| |
Collapse
|
5
|
He L, Lomberk G. Collateral Victim or Rescue Worker?-The Role of Histone Methyltransferases in DNA Damage Repair and Their Targeting for Therapeutic Opportunities in Cancer. Front Cell Dev Biol 2021; 9:735107. [PMID: 34869318 PMCID: PMC8636273 DOI: 10.3389/fcell.2021.735107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/01/2021] [Indexed: 01/25/2023] Open
Abstract
Disrupted DNA damage signaling greatly threatens cell integrity and plays significant roles in cancer. With recent advances in understanding the human genome and gene regulation in the context of DNA damage, chromatin biology, specifically biology of histone post-translational modifications (PTMs), has emerged as a popular field of study with great promise for cancer therapeutics. Here, we discuss how key histone methylation pathways contribute to DNA damage repair and impact tumorigenesis within this context, as well as the potential for their targeting as part of therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Lishu He
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States,Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Gwen Lomberk
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States,Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States,LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, WI, United States,*Correspondence: Gwen Lomberk,
| |
Collapse
|
6
|
Ortega J, Lee GS, Gu L, Yang W, Li GM. Mispair-bound human MutS-MutL complex triggers DNA incisions and activates mismatch repair. Cell Res 2021; 31:542-553. [PMID: 33510387 PMCID: PMC8089094 DOI: 10.1038/s41422-021-00468-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/17/2020] [Indexed: 01/30/2023] Open
Abstract
DNA mismatch repair (MMR) relies on MutS and MutL ATPases for mismatch recognition and strand-specific nuclease recruitment to remove mispaired bases in daughter strands. However, whether the MutS-MutL complex coordinates MMR by ATP-dependent sliding on DNA or protein-protein interactions between the mismatch and strand discrimination signal is ambiguous. Using functional MMR assays and systems preventing proteins from sliding, we show that sliding of human MutSα is required not for MMR initiation, but for final mismatch removal. MutSα recruits MutLα to form a mismatch-bound complex, which initiates MMR by nicking the daughter strand 5' to the mismatch. Exonuclease 1 (Exo1) is then recruited to the nick and conducts 5' → 3' excision. ATP-dependent MutSα dissociation from the mismatch is necessary for Exo1 to remove the mispaired base when the excision reaches the mismatch. Therefore, our study has resolved a long-standing puzzle, and provided new insights into the mechanism of MMR initiation and mispair removal.
Collapse
Affiliation(s)
- Janice Ortega
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Grace Sanghee Lee
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY USA ,Present Address: Division of Viral Hepatitis, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Liya Gu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD USA
| | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX USA ,Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY USA
| |
Collapse
|
7
|
Huang Y, Li GM. DNA mismatch repair in the context of chromatin. Cell Biosci 2020; 10:10. [PMID: 32025281 PMCID: PMC6996186 DOI: 10.1186/s13578-020-0379-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/24/2020] [Indexed: 12/11/2022] Open
Abstract
DNA mismatch repair (MMR) maintains replication fidelity by correcting mispaired nucleotides incorporated by DNA polymerases. Defects in MMR lead to cancers characterized by microsatellite instability. Recently, chromatin mechanisms that regulate MMR have been discovered, which sheds new light on MMR deficiency and its role in tumorigenesis. This review summarizes these chromatin-level mechanisms that regulate MMR and their implications for tumor development.
Collapse
Affiliation(s)
- Yaping Huang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| |
Collapse
|
8
|
Kim D, Fishel R, Lee JB. Coordinating Multi-Protein Mismatch Repair by Managing Diffusion Mechanics on the DNA. J Mol Biol 2018; 430:4469-4480. [PMID: 29792877 PMCID: PMC6388638 DOI: 10.1016/j.jmb.2018.05.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/01/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022]
Abstract
DNA mismatch repair (MMR) corrects DNA base-pairing errors that occur during DNA replication. MMR catalyzes strand-specific DNA degradation and resynthesis by dynamic molecular coordination of sequential downstream pathways. The temporal and mechanistic order of molecular events is essential to insure interactions in MMR that occur over long distances on the DNA. Biophysical real-time studies of highly conserved components on mismatched DNA have shed light on the mechanics of MMR. Single-molecule imaging has visualized stochastically coordinated MMR interactions that are based on thermal fluctuation-driven motions. In this review, we describe the role of diffusivity and stochasticity in MMR beginning with mismatch recognition through strand-specific excision. We conclude with a perspective of the possible research directions that should solve the remaining questions in MMR.
Collapse
Affiliation(s)
- Daehyung Kim
- Department of Physics, Pohang University of Science & Technology (POSTECH), Pohang 37673, Korea
| | - Richard Fishel
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Jong-Bong Lee
- Department of Physics, Pohang University of Science & Technology (POSTECH), Pohang 37673, Korea; Interdisciplinary Bioscience & Bioengineering, POSTECH, Pohang 37673, Korea.
| |
Collapse
|
9
|
Bhattacharjee P, Sanyal T, Bhattacharjee S, Bhattacharjee P. Epigenetic alteration of mismatch repair genes in the population chronically exposed to arsenic in West Bengal, India. ENVIRONMENTAL RESEARCH 2018; 163:289-296. [PMID: 29499398 DOI: 10.1016/j.envres.2018.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/04/2018] [Accepted: 01/06/2018] [Indexed: 06/08/2023]
Abstract
INTRODUCTION Arsenic exposure and its adverse health outcome, including the association with cancer risk are well established from several studies across the globe. The present study aims to analyze the epigenetic regulation of key mismatch repair (MMR) genes in the arsenic-exposed population. METHOD A case-control study was conducted involving two hundred twenty four (N=224) arsenic exposed [with skin lesion (WSL=110) and without skin lesion (WOSL=114)] and one hundred and two (N=102) unexposed individuals. The methylation status of key MMR genes i.e. MLH1, MSH2, and PMS2 were analyzed using methylation-specific PCR (MSP). The gene expression was studied by qRTPCR. The expression of H3K36me3, which was earlier reported to be an important regulator of MMR pathway, was assessed using ELISA. RESULTS Arsenic-exposed individuals showed significant promoter hypermethylation (p < 0.0001) of MLH1 and MSH2 compared to those unexposed with consequent down-regulation in their gene expression [MLH1 (p=0.001) and MSH2 (p<0.05)]. However, no significant association was found in expression and methylation of PMS2 with arsenic exposure. We found significant down-regulation of H3K36me3 in the arsenic-exposed group, most significantly in the WSL group (p<0.0001). The expression of SETD2, the methyltransferase of an H3K36me3 moiety was found to be unaltered in arsenic exposure, suggesting the involvement of other regulatory factors yet to be identified. DISCUSSION In summary, the epigenetic repression of DNA damage repair genes due to promoter hypermethylation of MLH1 and MSH2 and inefficient recruitment of MMR complex at the site of DNA damage owing to the reduced level of H3K36me3 impairs the mismatch repair pathway that might render the arsenic-exposed individuals more susceptible towards DNA damage and associated cancer risk.
Collapse
Affiliation(s)
- Pritha Bhattacharjee
- Department of Zoology, University of Calcutta, Kolkata 700019, India; Department of Environmental Science, University of Calcutta, Kolkata 700019, India
| | - Tamalika Sanyal
- Department of Zoology, University of Calcutta, Kolkata 700019, India; Department of Environmental Science, University of Calcutta, Kolkata 700019, India
| | | | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India.
| |
Collapse
|
10
|
Li J, Duns G, Westers H, Sijmons R, van den Berg A, Kok K. SETD2: an epigenetic modifier with tumor suppressor functionality. Oncotarget 2018; 7:50719-50734. [PMID: 27191891 PMCID: PMC5226616 DOI: 10.18632/oncotarget.9368] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/05/2016] [Indexed: 11/25/2022] Open
Abstract
In the past decade important progress has been made in our understanding of the epigenetic regulatory machinery. It has become clear that genetic aberrations in multiple epigenetic modifier proteins are associated with various types of cancer. Moreover, targeting the epigenome has emerged as a novel tool to treat cancer patients. Recently, the first drugs have been reported that specifically target SETD2-negative tumors. In this review we discuss the studies on the associated protein, Set domain containing 2 (SETD2), a histone modifier for which mutations have only recently been associated with cancer development. Our review starts with the structural characteristics of SETD2 and extends to its corresponding function by combining studies on SETD2 function in yeast, Drosophila, Caenorhabditis elegans, mice, and humans. SETD2 is now generally known as the single human gene responsible for trimethylation of lysine 36 of Histone H3 (H3K36). H3K36me3 readers that recruit protein complexes to carry out specific processes, including transcription elongation, RNA processing, and DNA repair, determine the impact of this histone modification. Finally, we describe the prevalence of SETD2-inactivating mutations in cancer, with the highest frequency in clear cell Renal Cell Cancer, and explore how SETD2-inactivation might contribute to tumor development.
Collapse
Affiliation(s)
- Jun Li
- Department of Genetics, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Gerben Duns
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, Canada
| | - Helga Westers
- Department of Genetics, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Rolf Sijmons
- Department of Genetics, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Klaas Kok
- Department of Genetics, University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
11
|
Xu H, Chen X, Ying N, Wang M, Xu X, Shi R, Hua Y. Mass spectrometry-based quantification of the cellular response to ultraviolet radiation in HeLa cells. PLoS One 2017; 12:e0186806. [PMID: 29155820 PMCID: PMC5695813 DOI: 10.1371/journal.pone.0186806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/06/2017] [Indexed: 01/11/2023] Open
Abstract
Ultraviolet (UV) irradiation is a common form of DNA damage that can cause pyrimidine dimers between DNA, which can cause gene mutations, even double-strand breaks and threaten genome stability. If DNA repair systems default their roles at this stage, the organism can be damaged and result in disease, especially cancer. To better understand the cellular response to this form of damage, we applied highly sensitive mass spectrometry to perform comparative proteomics of phosphorylation in HeLa cells. A total of 4367 phosphorylation sites in 2100 proteins were identified, many of which had not been reported previously. Comprehensive bioinformatics analysis revealed that these proteins were involved in many important biological processes, including signaling, localization and cell cycle regulation. The nuclear pore complex, which is very important for RNA transport, was changed significantly at phosphorylation level, indicating its important role in response to UV-induced cellular stress. Protein-protein interaction network analysis and DNA repair pathways crosstalk were also examined in this study. Proteins involved in base excision repair, nucleotide repair and mismatch repair changed their phosphorylation pattern in response to UV treatment, indicating the complexity of cellular events and the coordination of these pathways. These systematic analyses provided new clues of protein phosphorylation in response to specific DNA damage, which is very important for further investigation. And give macroscopic view on an overall phosphorylation situation under UV radiation.
Collapse
Affiliation(s)
- Hong Xu
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Xuanyi Chen
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Nanjiao Ying
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Meixia Wang
- Zhejiang Institute of Microbiology, Hangzhou, China
| | - Xiaoli Xu
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Rongyi Shi
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Yuejin Hua
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
12
|
Kadyrova LY, Dahal BK, Kadyrov FA. The Major Replicative Histone Chaperone CAF-1 Suppresses the Activity of the DNA Mismatch Repair System in the Cytotoxic Response to a DNA-methylating Agent. J Biol Chem 2016; 291:27298-27312. [PMID: 27872185 DOI: 10.1074/jbc.m116.760561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/15/2016] [Indexed: 11/06/2022] Open
Abstract
The DNA mismatch repair (MMR) system corrects DNA mismatches in the genome. It is also required for the cytotoxic response of O6-methylguanine-DNA methyltransferase (MGMT)-deficient mammalian cells and yeast mgt1Δ rad52Δ cells to treatment with Sn1-type methylating agents, which produce cytotoxic O6-methylguanine (O6-mG) DNA lesions. Specifically, an activity of the MMR system causes degradation of irreparable O6-mG-T mispair-containing DNA, triggering cell death; this process forms the basis of treatments of MGMT-deficient cancers with Sn1-type methylating drugs. Recent research supports the view that degradation of irreparable O6-mG-T mispair-containing DNA by the MMR system and CAF-1-dependent packaging of the newly replicated DNA into nucleosomes are two concomitant processes that interact with each other. Here, we studied whether CAF-1 modulates the activity of the MMR system in the cytotoxic response to Sn1-type methylating agents. We found that CAF-1 suppresses the activity of the MMR system in the cytotoxic response of yeast mgt1Δ rad52Δ cells to the prototypic Sn1-type methylating agent N-methyl-N'-nitro-N-nitrosoguanidine. We also report evidence that in human MGMT-deficient cell-free extracts, CAF-1-dependent packaging of irreparable O6-mG-T mispair-containing DNA into nucleosomes suppresses its degradation by the MMR system. Taken together, these findings suggest that CAF-1-dependent incorporation of irreparable O6-mG-T mispair-containing DNA into nucleosomes suppresses its degradation by the MMR system, thereby defending the cell against killing by the Sn1-type methylating agent.
Collapse
Affiliation(s)
- Lyudmila Y Kadyrova
- From the Department of Biochemistry and Molecular Biology, Southern Illinois University, School of Medicine, Carbondale, Illinois 62901
| | - Basanta K Dahal
- From the Department of Biochemistry and Molecular Biology, Southern Illinois University, School of Medicine, Carbondale, Illinois 62901
| | - Farid A Kadyrov
- From the Department of Biochemistry and Molecular Biology, Southern Illinois University, School of Medicine, Carbondale, Illinois 62901
| |
Collapse
|
13
|
Chakraborty U, Alani E. Understanding how mismatch repair proteins participate in the repair/anti-recombination decision. FEMS Yeast Res 2016; 16:fow071. [PMID: 27573382 PMCID: PMC5976031 DOI: 10.1093/femsyr/fow071] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/24/2016] [Accepted: 08/24/2016] [Indexed: 01/06/2023] Open
Abstract
Mismatch repair (MMR) systems correct DNA mismatches that result from DNA polymerase misincorporation errors. Mismatches also appear in heteroduplex DNA intermediates formed during recombination between nearly identical sequences, and can be corrected by MMR or removed through an unwinding mechanism, known as anti-recombination or heteroduplex rejection. We review studies, primarily in baker's yeast, which support how specific factors can regulate the MMR/anti-recombination decision. Based on recent advances, we present models for how DNA structure, relative amounts of key repair proteins, the timely localization of repair proteins to DNA substrates and epigenetic marks can modulate this critical decision.
Collapse
Affiliation(s)
- Ujani Chakraborty
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| |
Collapse
|
14
|
Lowdon RF, Jang HS, Wang T. Evolution of Epigenetic Regulation in Vertebrate Genomes. Trends Genet 2016; 32:269-283. [PMID: 27080453 PMCID: PMC4842087 DOI: 10.1016/j.tig.2016.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/31/2022]
Abstract
Empirical models of sequence evolution have spurred progress in the field of evolutionary genetics for decades. We are now realizing the importance and complexity of the eukaryotic epigenome. While epigenome analysis has been applied to genomes from single-cell eukaryotes to human, comparative analyses are still relatively few and computational algorithms to quantify epigenome evolution remain scarce. Accordingly, a quantitative model of epigenome evolution remains to be established. We review here the comparative epigenomics literature and synthesize its overarching themes. We also suggest one mechanism, transcription factor binding site (TFBS) turnover, which relates sequence evolution to epigenetic conservation or divergence. Lastly, we propose a framework for how the field can move forward to build a coherent quantitative model of epigenome evolution.
Collapse
Affiliation(s)
- Rebecca F Lowdon
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Hyo Sik Jang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ting Wang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
15
|
Schmidt TT, Hombauer H. Visualization of mismatch repair complexes using fluorescence microscopy. DNA Repair (Amst) 2016; 38:58-67. [DOI: 10.1016/j.dnarep.2015.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/30/2015] [Accepted: 11/30/2015] [Indexed: 11/15/2022]
|
16
|
Li Z, Pearlman AH, Hsieh P. DNA mismatch repair and the DNA damage response. DNA Repair (Amst) 2016; 38:94-101. [PMID: 26704428 PMCID: PMC4740233 DOI: 10.1016/j.dnarep.2015.11.019] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/17/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022]
Abstract
This review discusses the role of DNA mismatch repair (MMR) in the DNA damage response (DDR) that triggers cell cycle arrest and, in some cases, apoptosis. Although the focus is on findings from mammalian cells, much has been learned from studies in other organisms including bacteria and yeast [1,2]. MMR promotes a DDR mediated by a key signaling kinase, ATM and Rad3-related (ATR), in response to various types of DNA damage including some encountered in widely used chemotherapy regimes. An introduction to the DDR mediated by ATR reveals its immense complexity and highlights the many biological and mechanistic questions that remain. Recent findings and future directions are highlighted.
Collapse
Affiliation(s)
- Zhongdao Li
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 5 Rm. 324, 5 Memorial Dr. MSC 0538, Bethesda, MD 20892-0538, USA
| | - Alexander H Pearlman
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 5 Rm. 324, 5 Memorial Dr. MSC 0538, Bethesda, MD 20892-0538, USA
| | - Peggy Hsieh
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 5 Rm. 324, 5 Memorial Dr. MSC 0538, Bethesda, MD 20892-0538, USA.
| |
Collapse
|
17
|
Peña-Diaz J, Rasmussen LJ. Approaches to diagnose DNA mismatch repair gene defects in cancer. DNA Repair (Amst) 2015; 38:147-154. [PMID: 26708048 DOI: 10.1016/j.dnarep.2015.11.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 08/12/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022]
Abstract
The DNA repair pathway mismatch repair (MMR) is responsible for the recognition and correction of DNA biosynthetic errors caused by inaccurate nucleotide incorporation during replication. Faulty MMR leads to failure to address the mispairs or insertion deletion loops (IDLs) left behind by the replicative polymerases and results in increased mutation load at the genome. The realization that defective MMR leads to a hypermutation phenotype and increased risk of tumorigenesis highlights the relevance of this pathway for human disease. The association of MMR defects with increased risk of cancer development was first observed in colorectal cancer patients that carried inactivating germline mutations in MMR genes and the disease was named as hereditary non-polyposis colorectal cancer (HNPCC). Currently, a growing list of cancers is found to be MMR defective and HNPCC has been renamed Lynch syndrome (LS) partly to include the associated risk of developing extra-colonic cancers. In addition, a number of non-hereditary, mostly epigenetic, alterations of MMR genes have been described in sporadic tumors. Besides conferring a strong cancer predisposition, genetic or epigenetic inactivation of MMR genes also renders cells resistant to some chemotherapeutic agents. Therefore, diagnosis of MMR deficiency has important implications for the management of the patients, the surveillance of their relatives in the case of LS and for the choice of treatment. Some of the alterations found in MMR genes have already been well defined and their pathogenicity assessed. Despite this substantial wealth of knowledge, the effects of a large number of alterations remain uncharacterized (variants of uncertain significance, VUSs). The advent of personalized genomics is likely to increase the list of VUSs found in MMR genes and anticipates the need of diagnostic tools for rapid assessment of their pathogenicity. This review describes current tools and future strategies for addressing the relevance of MMR gene alterations in human disease.
Collapse
Affiliation(s)
- Javier Peña-Diaz
- Center for Healthy Aging, Department of Neuroscience and Pharmacology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
18
|
Abstract
Three processes act in series to accurately replicate the eukaryotic nuclear genome. The major replicative DNA polymerases strongly prevent mismatch formation, occasional mismatches that do form are proofread during replication, and rare mismatches that escape proofreading are corrected by mismatch repair (MMR). This review focuses on MMR in light of increasing knowledge about nuclear DNA replication enzymology and the rate and specificity with which mismatches are generated during leading- and lagging-strand replication. We consider differences in MMR efficiency in relation to mismatch recognition, signaling to direct MMR to the nascent strand, mismatch removal, and the timing of MMR. These studies are refining our understanding of relationships between generating and repairing replication errors to achieve accurate replication of both DNA strands of the nuclear genome.
Collapse
Affiliation(s)
- Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709;
| | - Dorothy A Erie
- Department of Chemistry and Curriculum in Applied Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599-3290;
| |
Collapse
|