1
|
Pan X, Xu C, Cheng G, Chen Z, Liu M, Mei Y. Transcription factor E2F3 activates CDC25B to regulate DNA damage and promote mitoxantrone resistance in stomach adenocarcinoma. Mol Biol Rep 2024; 51:90. [PMID: 38194158 DOI: 10.1007/s11033-023-08933-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/10/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND CDC25B, as a member of the cell cycle regulating protein family, is located in the cytoplasm and is involved in the transition of the cell cycle and mitosis. CDC25B is highly expressed in various tumors and is a newly discovered oncogene. This study aimed to investigate the impact of CDC25B on mitoxantrone resistance in stomach adenocarcinoma (STAD) and its possible mechanisms. METHODS This study analyzed the expression of CDC25B and its potential transcription factor E2F3 in STAD, as well as the IC50 values of tumor tissues by bioinformatics analysis. Expression levels of CDC25B and E2F3 in STAD cells were measured by qRT-PCR. MTT was utilized to evaluate cell viability and IC50 values of STAD cells, and comet assay was utilized to analyze the level of DNA damage in STAD cells. Western blot was used to analyze the expression of DNA damage-related proteins. The targeting relationship between E2F3 and CDC25B was validated by dual-luciferase and ChIP assays. RESULTS Bioinformatics analysis and molecular experiments showed that CDC25B and E2F3 were highly expressed in STAD, and CDC25B was enriched in the mismatch repair and nucleotide excision repair pathways. The IC50 values of tumor tissues with high expression of CDC25B were relatively high. Dual-luciferase and ChIP assays confirmed that CDC25B could be transcriptionally activated by E2F3. Cell experiments revealed that CDC25B promoted mitoxantrone resistance in STAD cells by regulating DNA damage. Further research found that low expression of E2F3 inhibited mitoxantrone resistance in STAD cells by DNA damage, but overexpression of CDC25B reversed the impact of E2F3 knockdown on mitoxantrone resistance in STAD cells. CONCLUSION This study confirmed a novel mechanism by which E2F3/CDC25B mediated DNA damage to promote mitoxantrone resistance in STAD cells, providing a new therapeutic target for STAD treatment.
Collapse
Affiliation(s)
- Xiaoming Pan
- Department of Gastrointestinal Surgery, Lishui People's Hospital, No.15 Dazhong Street, Liandu District, Lishui, Zhejiang Province, 323000, China
| | - Chaobo Xu
- Department of Gastrointestinal Surgery, Lishui People's Hospital, No.15 Dazhong Street, Liandu District, Lishui, Zhejiang Province, 323000, China
| | - Guoxiong Cheng
- Department of Gastrointestinal Surgery, Lishui People's Hospital, No.15 Dazhong Street, Liandu District, Lishui, Zhejiang Province, 323000, China
| | - Zhengwei Chen
- Department of Gastrointestinal Surgery, Lishui People's Hospital, No.15 Dazhong Street, Liandu District, Lishui, Zhejiang Province, 323000, China
| | - Ming Liu
- Department of Gastrointestinal Surgery, Lishui People's Hospital, No.15 Dazhong Street, Liandu District, Lishui, Zhejiang Province, 323000, China
| | - Yijun Mei
- Department of Gastrointestinal Surgery, Lishui People's Hospital, No.15 Dazhong Street, Liandu District, Lishui, Zhejiang Province, 323000, China.
| |
Collapse
|
2
|
Morás AM, Henn JG, Steffens Reinhardt L, Lenz G, Moura DJ. Recent developments in drug delivery strategies for targeting DNA damage response in glioblastoma. Life Sci 2021; 287:120128. [PMID: 34774874 DOI: 10.1016/j.lfs.2021.120128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022]
Abstract
Glioblastoma is the most frequent and malignant brain tumor. The median survival for this disease is approximately 15 months, and despite all the available treatment strategies employed, it remains an incurable disease. Preclinical and clinical research have shown that the resistance process related to DNA damage repair pathways, glioma stem cells, blood-brain barrier selectivity, and dose-limiting toxicity of systemic treatment leads to poor clinical outcomes. In this context, the advent of drug delivery systems associated with localized treatment seems to be a promising and versatile alternative to overcome the failure of the current treatment approaches. In order to bypass therapeutic tumor resistance mechanisms, more effective combinatorial therapies should be identified, such as the use of cytotoxic drugs combined with the inhibition of DNA damage response (DDR)-related targets. Additionally, critical reasoning about the delivery approach and administration route in brain tumors treatment innovation is essential. The outcomes of future experimental studies regarding the association of delivery systems, alternative treatment routes, and DDR targets are expected to lead to the development of refined therapeutic interventions. Novel therapeutic approaches could improve the life's quality of glioblastoma patients and increase their survival rate.
Collapse
Affiliation(s)
- A M Morás
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, (UFCSPA), Porto Alegre, Brazil.
| | - J G Henn
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, (UFCSPA), Porto Alegre, Brazil.
| | - L Steffens Reinhardt
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, (UFCSPA), Porto Alegre, Brazil.
| | - G Lenz
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - D J Moura
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, (UFCSPA), Porto Alegre, Brazil.
| |
Collapse
|
3
|
Busatto FF, Mersaoui SY, Sun Y, Pommier Y, Masson JY, Saffi J. Functions of the CSB Protein at Topoisomerase 2 Inhibitors-Induced DNA Lesions. Front Cell Dev Biol 2021; 9:727836. [PMID: 34746125 PMCID: PMC8569893 DOI: 10.3389/fcell.2021.727836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/01/2021] [Indexed: 12/05/2022] Open
Abstract
Topoisomerase 2 (TOP2) inhibitors are drugs widely used in the treatment of different types of cancer. Processing of their induced-lesions create double-strand breaks (DSBs) in the DNA, which is the main toxic mechanism of topoisomerase inhibitors to kill cancer cells. It was established that the Nucleotide Excision Repair pathway respond to TOP2-induced lesions, mainly through the Cockayne Syndrome B (CSB) protein. In this paper, we further define the mechanism and type of lesions induced by TOP2 inhibitors when CSB is abrogated. In the absence of TOP2, but not during pharmacological inhibition, an increase in R-Loops was detected. We also observed that CSB knockdown provokes the accumulation of DSBs induced by TOP2 inhibitors. Consistent with a functional interplay, interaction between CSB and TOP2 occurred after TOP2 inhibition. This was corroborated with in vitro DNA cleavage assays where CSB stimulated the activity of TOP2. Altogether, our results show that TOP2 is stimulated by the CSB protein and prevents the accumulation of R-loops/DSBs linked to genomic instability.
Collapse
Affiliation(s)
- Franciele Faccio Busatto
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil.,Post-Graduation Program in Molecular and Cell Biology (PPGBCM), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Oncology Division, CHU de Québec-Université Laval, Quebec City, QC, Canada.,Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Sofiane Y Mersaoui
- Oncology Division, CHU de Québec-Université Laval, Quebec City, QC, Canada.,Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Yilun Sun
- Developmental Therapeutics Branch, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yves Pommier
- Developmental Therapeutics Branch, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jean-Yves Masson
- Oncology Division, CHU de Québec-Université Laval, Quebec City, QC, Canada.,Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil.,Post-Graduation Program in Molecular and Cell Biology (PPGBCM), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
4
|
Busatto FF, Viero VP, Schaefer BT, Saffi J. Cell growth analysis and nucleotide excision repair modulation in breast cancer cells submitted to a protocol using doxorubicin and paclitaxel. Life Sci 2021; 268:118990. [PMID: 33412214 DOI: 10.1016/j.lfs.2020.118990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/13/2020] [Accepted: 12/24/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION One of the most used regimens to treat breast cancer is the dose-dense ACT protocol, a combination of anthracycline doxorubicin (DOX) with cyclophosphamide and paclitaxel (PCTX). However, many tumors show resistance to the protocols applied. It is known that the nucleotide excision repair (NER) pathway acts by removing the DOX-generated lesions, and this, together with other DNA repair pathways, can modulate the response to treatment. AIMS To evaluate the in vitro growth profile of breast cancer cells (MCF7), and the modulation of DNA repair genes, submitted to a protocol using DOX and PCTX in a similar regimen to what is used in clinical practice. MAIN METHODS MCF7 cells were treated with repeated cycles of DOX and PCTX and followed-up during and after each of the treatments. The population doubling of the remaining cells was calculated during the complete protocol and DNA repair gene expression was evaluated at different time-points. KEY FINDINGS An increase in all NER genes analyzed after the DOX treatment was observed, but not after the PCTX treatment. MRE11was overexpressed at all evaluated time-points. There was a resumption of NER genes overexpression profile when cells were maintained for follow-up and retook their growth pattern, indicating that DNA repair pathways can modulate their expression during the chemotherapy exposure.
Collapse
Affiliation(s)
- Franciele Faccio Busatto
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre - UFCSPA, Porto Alegre, RS, Brazil; Post-Graduation Program in Molecular and Cell Biology (PPGBCM), Federal University of Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Victoria Pereira Viero
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre - UFCSPA, Porto Alegre, RS, Brazil
| | - Bruna Thaís Schaefer
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre - UFCSPA, Porto Alegre, RS, Brazil
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre - UFCSPA, Porto Alegre, RS, Brazil; Post-Graduation Program in Molecular and Cell Biology (PPGBCM), Federal University of Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
5
|
Roychoudhury S, Kumar A, Bhatkar D, Sharma NK. Molecular avenues in targeted doxorubicin cancer therapy. Future Oncol 2020; 16:687-700. [PMID: 32253930 DOI: 10.2217/fon-2019-0458] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
In recent, intra- and inter-tumor heterogeneity is seen as one of key factors behind success and failure of chemotherapy. Incessant use of doxorubicin (DOX) drug is associated with numerous post-treatment debacles including cardiomyopathy, health disorders, reversal of tumor and formation of secondary tumors. The module of cancer treatment has undergone evolutionary changes by achieving crucial understanding on molecular, genetic, epigenetic and environmental adaptations by cancer cells. Therefore, there is a paradigm shift in cancer therapeutic by employing amalgam of peptide mimetic, small RNA mimetic, DNA repair protein inhibitors, signaling inhibitors and epigenetic modulators to achieve targeted and personalized DOX therapy. This review summarizes on recent therapeutic avenues that can potentiate DOX effects by removing discernible pitfalls among cancer patients.
Collapse
Affiliation(s)
- Sayantani Roychoudhury
- Cancer & Translational Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Ajay Kumar
- Cancer & Translational Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Devyani Bhatkar
- Cancer & Translational Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Nilesh Kumar Sharma
- Cancer & Translational Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| |
Collapse
|
6
|
|
7
|
Li B, Zhang L, Zhang Z, Gao R, Li H, Dong Z, Wang Q, Zhou Q, Wang Y. Physiologically stable F127-GO supramolecular hydrogel with sustained drug release characteristic for chemotherapy and photothermal therapy. RSC Adv 2018; 8:1693-1699. [PMID: 35540894 PMCID: PMC9077132 DOI: 10.1039/c7ra12099k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/20/2017] [Indexed: 01/13/2023] Open
Abstract
The F127-GO-DOX supramolecular hydrogel system with sustained drug release characteristic for chemotherapy and photothermal therapy.
Collapse
Affiliation(s)
- Bingxia Li
- Key Laboratory of Biomedical Functional Materials
- School of Sciences
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Luna Zhang
- Key Laboratory of Biomedical Functional Materials
- School of Sciences
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Zichen Zhang
- Key Laboratory of Biomedical Functional Materials
- School of Sciences
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Ruoqing Gao
- Key Laboratory of Biomedical Functional Materials
- School of Sciences
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Hongmei Li
- Key Laboratory of Biomedical Functional Materials
- School of Sciences
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Zhipeng Dong
- Key Laboratory of Biomedical Functional Materials
- School of Sciences
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Qiyan Wang
- Key Laboratory of Biomedical Functional Materials
- School of Sciences
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Qingfa Zhou
- Key Laboratory of Biomedical Functional Materials
- School of Sciences
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Yue Wang
- Key Laboratory of Biomedical Functional Materials
- School of Sciences
- China Pharmaceutical University
- Nanjing 211198
- China
| |
Collapse
|
8
|
Role of nucleotide excision repair proteins in response to DNA damage induced by topoisomerase II inhibitors. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 768:68-77. [PMID: 27234564 DOI: 10.1016/j.mrrev.2016.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 03/11/2016] [Accepted: 04/08/2016] [Indexed: 01/26/2023]
Abstract
In cancer treatment, chemotherapy is one of the main strategies used. The knowledge of the cellular and molecular characteristics of tumors allows the use of more specific drugs, making the removal of tumors more efficient. Among the drugs of choice in these treatments, topoisomerase inhibitors are widely used against different types of tumors. Topoisomerases are enzymes responsible for maintaining the structure of DNA, altering its topological state temporarily during the processes of replication and transcription, in order to avoid supercoiling and entanglements at the double helix. The DNA damage formed as a result of topoisomerase inhibition can be repaired by DNA repair mechanisms. Thus, DNA repair pathways can modulate the effectiveness of chemotherapy. Homologous recombination (HR) and non-homologous end joining (NHEJ) are the main pathways involved in the removal of double strand breaks (DSBs); while nucleotide excision repair (NER) is mainly characterized by the removal of lesions that lead to significant structural distortions in the DNA double helix. Evidence has shown that DSBs are the main type of damage resulting from the inhibition of the DNA topoisomerase II enzyme, and therefore the involvement of HR and NHEJ pathways in the repair process is well established. However, some topoisomerase II inhibitors induce other types of lesions, like DNA adducts, interstrand crosslinks and reactive oxygen species, and studies have shown that other DNA repair pathways might be participating in removing injury induced by these drugs. This review aims to correlate the involvement of proteins from different DNA repair pathways in response to these drugs, with an emphasis on NER.
Collapse
|